{"title":"TAO","authors":"Sudershan Boovaraghavan, Prasoon Patidar, Yuvraj Agarwal","doi":"10.1145/3610896","DOIUrl":null,"url":null,"abstract":"Translating fine-grained activity detection (e.g., phone ring, talking interspersed with silence and walking) into semantically meaningful and richer contextual information (e.g., on a phone call for 20 minutes while exercising) is essential towards enabling a range of healthcare and human-computer interaction applications. Prior work has proposed building ontologies or temporal analysis of activity patterns with limited success in capturing complex real-world context patterns. We present TAO, a hybrid system that leverages OWL-based ontologies and temporal clustering approaches to detect high-level contexts from human activities. TAO can characterize sequential activities that happen one after the other and activities that are interleaved or occur in parallel to detect a richer set of contexts more accurately than prior work. We evaluate TAO on real-world activity datasets (Casas and Extrasensory) and show that our system achieves, on average, 87% and 80% accuracy for context detection, respectively. We deploy and evaluate TAO in a real-world setting with eight participants using our system for three hours each, demonstrating TAO's ability to capture semantically meaningful contexts in the real world. Finally, to showcase the usefulness of contexts, we prototype wellness applications that assess productivity and stress and show that the wellness metrics calculated using contexts provided by TAO are much closer to the ground truth (on average within 1.1%), as compared to the baseline approach (on average within 30%).","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":"13 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TAO\",\"authors\":\"Sudershan Boovaraghavan, Prasoon Patidar, Yuvraj Agarwal\",\"doi\":\"10.1145/3610896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Translating fine-grained activity detection (e.g., phone ring, talking interspersed with silence and walking) into semantically meaningful and richer contextual information (e.g., on a phone call for 20 minutes while exercising) is essential towards enabling a range of healthcare and human-computer interaction applications. Prior work has proposed building ontologies or temporal analysis of activity patterns with limited success in capturing complex real-world context patterns. We present TAO, a hybrid system that leverages OWL-based ontologies and temporal clustering approaches to detect high-level contexts from human activities. TAO can characterize sequential activities that happen one after the other and activities that are interleaved or occur in parallel to detect a richer set of contexts more accurately than prior work. We evaluate TAO on real-world activity datasets (Casas and Extrasensory) and show that our system achieves, on average, 87% and 80% accuracy for context detection, respectively. We deploy and evaluate TAO in a real-world setting with eight participants using our system for three hours each, demonstrating TAO's ability to capture semantically meaningful contexts in the real world. Finally, to showcase the usefulness of contexts, we prototype wellness applications that assess productivity and stress and show that the wellness metrics calculated using contexts provided by TAO are much closer to the ground truth (on average within 1.1%), as compared to the baseline approach (on average within 30%).\",\"PeriodicalId\":20553,\"journal\":{\"name\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3610896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3610896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Translating fine-grained activity detection (e.g., phone ring, talking interspersed with silence and walking) into semantically meaningful and richer contextual information (e.g., on a phone call for 20 minutes while exercising) is essential towards enabling a range of healthcare and human-computer interaction applications. Prior work has proposed building ontologies or temporal analysis of activity patterns with limited success in capturing complex real-world context patterns. We present TAO, a hybrid system that leverages OWL-based ontologies and temporal clustering approaches to detect high-level contexts from human activities. TAO can characterize sequential activities that happen one after the other and activities that are interleaved or occur in parallel to detect a richer set of contexts more accurately than prior work. We evaluate TAO on real-world activity datasets (Casas and Extrasensory) and show that our system achieves, on average, 87% and 80% accuracy for context detection, respectively. We deploy and evaluate TAO in a real-world setting with eight participants using our system for three hours each, demonstrating TAO's ability to capture semantically meaningful contexts in the real world. Finally, to showcase the usefulness of contexts, we prototype wellness applications that assess productivity and stress and show that the wellness metrics calculated using contexts provided by TAO are much closer to the ground truth (on average within 1.1%), as compared to the baseline approach (on average within 30%).