{"title":"关于广义Johnson图的超(边)连通性","authors":"Zhecheng Yu, Liqiong Xu, Xuemin Wu, Chuanye Zheng","doi":"10.1142/s012905412350017x","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text], [Formula: see text] and [Formula: see text] be non-negative integers. The generalized Johnson graph [Formula: see text] is the graph whose vertices are the [Formula: see text]-subsets of the set [Formula: see text], and two vertices are adjacent if and only if they intersect with [Formula: see text] elements. Special cases of generalized Johnson graph include the Kneser graph [Formula: see text] and the Johnson graph [Formula: see text]. These graphs play an important role in coding theory, Ramsey theory, combinatorial geometry and hypergraphs theory. In this paper, we discuss the connectivity properties of the Kneser graph [Formula: see text] and [Formula: see text] by their symmetric properties. Specifically, with the help of some properties of vertex/edge-transitive graphs we prove that [Formula: see text] [Formula: see text] and [Formula: see text] [Formula: see text] are super restricted edge-connected. Besides, we obtain the exact value of the restricted edge-connectivity and the cyclic edge-connectivity of the Kneser graph [Formula: see text] [Formula: see text] and [Formula: see text] [Formula: see text], and further show that the Kneser graph [Formula: see text] [Formula: see text] is super vertex-connected and super cyclically edge-connected.","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Super (Edge)-Connectivity of Generalized Johnson Graphs\",\"authors\":\"Zhecheng Yu, Liqiong Xu, Xuemin Wu, Chuanye Zheng\",\"doi\":\"10.1142/s012905412350017x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text], [Formula: see text] and [Formula: see text] be non-negative integers. The generalized Johnson graph [Formula: see text] is the graph whose vertices are the [Formula: see text]-subsets of the set [Formula: see text], and two vertices are adjacent if and only if they intersect with [Formula: see text] elements. Special cases of generalized Johnson graph include the Kneser graph [Formula: see text] and the Johnson graph [Formula: see text]. These graphs play an important role in coding theory, Ramsey theory, combinatorial geometry and hypergraphs theory. In this paper, we discuss the connectivity properties of the Kneser graph [Formula: see text] and [Formula: see text] by their symmetric properties. Specifically, with the help of some properties of vertex/edge-transitive graphs we prove that [Formula: see text] [Formula: see text] and [Formula: see text] [Formula: see text] are super restricted edge-connected. Besides, we obtain the exact value of the restricted edge-connectivity and the cyclic edge-connectivity of the Kneser graph [Formula: see text] [Formula: see text] and [Formula: see text] [Formula: see text], and further show that the Kneser graph [Formula: see text] [Formula: see text] is super vertex-connected and super cyclically edge-connected.\",\"PeriodicalId\":50323,\"journal\":{\"name\":\"International Journal of Foundations of Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s012905412350017x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s012905412350017x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
On the Super (Edge)-Connectivity of Generalized Johnson Graphs
Let [Formula: see text], [Formula: see text] and [Formula: see text] be non-negative integers. The generalized Johnson graph [Formula: see text] is the graph whose vertices are the [Formula: see text]-subsets of the set [Formula: see text], and two vertices are adjacent if and only if they intersect with [Formula: see text] elements. Special cases of generalized Johnson graph include the Kneser graph [Formula: see text] and the Johnson graph [Formula: see text]. These graphs play an important role in coding theory, Ramsey theory, combinatorial geometry and hypergraphs theory. In this paper, we discuss the connectivity properties of the Kneser graph [Formula: see text] and [Formula: see text] by their symmetric properties. Specifically, with the help of some properties of vertex/edge-transitive graphs we prove that [Formula: see text] [Formula: see text] and [Formula: see text] [Formula: see text] are super restricted edge-connected. Besides, we obtain the exact value of the restricted edge-connectivity and the cyclic edge-connectivity of the Kneser graph [Formula: see text] [Formula: see text] and [Formula: see text] [Formula: see text], and further show that the Kneser graph [Formula: see text] [Formula: see text] is super vertex-connected and super cyclically edge-connected.
期刊介绍:
The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include:
- Algebraic theory of computing and formal systems
- Algorithm and system implementation issues
- Approximation, probabilistic, and randomized algorithms
- Automata and formal languages
- Automated deduction
- Combinatorics and graph theory
- Complexity theory
- Computational biology and bioinformatics
- Cryptography
- Database theory
- Data structures
- Design and analysis of algorithms
- DNA computing
- Foundations of computer security
- Foundations of high-performance computing