重症监护病房医护人员的接触者追踪

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jingwen Zhang, Ruixuan Dai, Ashraf Rjob, Ruiqi Wang, Reshad Hamauon, Jeffrey Candell, Thomas Bailey, Victoria J. Fraser, Maria Cristina Vazquez Guillamet, Chenyang Lu
{"title":"重症监护病房医护人员的接触者追踪","authors":"Jingwen Zhang, Ruixuan Dai, Ashraf Rjob, Ruiqi Wang, Reshad Hamauon, Jeffrey Candell, Thomas Bailey, Victoria J. Fraser, Maria Cristina Vazquez Guillamet, Chenyang Lu","doi":"10.1145/3610924","DOIUrl":null,"url":null,"abstract":"Contact tracing is a powerful tool for mitigating the spread of COVID-19 during the pandemic. Front-line healthcare workers are particularly at high risk of infection in hospital units. This paper presents ContAct TraCing for Hospitals (CATCH), an automated contact tracing system designed specifically for healthcare workers in hospital environments. CATCH employs distributed embedded devices placed throughout a hospital unit to detect close contacts among healthcare workers wearing Bluetooth Low Energy (BLE) beacons. We first identify a set of distinct contact tracing scenarios based on the diverse environmental characteristics of a real-world intensive care unit (ICU) and the different working patterns of healthcare workers in different spaces within the unit. We then develop a suite of novel contact tracing methods tailored for each scenario. CATCH has been deployed and evaluated in the ICU of a major medical center, demonstrating superior accuracy in contact tracing over existing approaches through a wide range of experiments. Furthermore, the real-world case study highlights the effectiveness and efficiency of CATCH compared to standard contact tracing practices.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":"40 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contact Tracing for Healthcare Workers in an Intensive Care Unit\",\"authors\":\"Jingwen Zhang, Ruixuan Dai, Ashraf Rjob, Ruiqi Wang, Reshad Hamauon, Jeffrey Candell, Thomas Bailey, Victoria J. Fraser, Maria Cristina Vazquez Guillamet, Chenyang Lu\",\"doi\":\"10.1145/3610924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contact tracing is a powerful tool for mitigating the spread of COVID-19 during the pandemic. Front-line healthcare workers are particularly at high risk of infection in hospital units. This paper presents ContAct TraCing for Hospitals (CATCH), an automated contact tracing system designed specifically for healthcare workers in hospital environments. CATCH employs distributed embedded devices placed throughout a hospital unit to detect close contacts among healthcare workers wearing Bluetooth Low Energy (BLE) beacons. We first identify a set of distinct contact tracing scenarios based on the diverse environmental characteristics of a real-world intensive care unit (ICU) and the different working patterns of healthcare workers in different spaces within the unit. We then develop a suite of novel contact tracing methods tailored for each scenario. CATCH has been deployed and evaluated in the ICU of a major medical center, demonstrating superior accuracy in contact tracing over existing approaches through a wide range of experiments. Furthermore, the real-world case study highlights the effectiveness and efficiency of CATCH compared to standard contact tracing practices.\",\"PeriodicalId\":20553,\"journal\":{\"name\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3610924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3610924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

接触者追踪是大流行期间缓解COVID-19传播的有力工具。一线医护人员在医院病房感染的风险尤其高。本文介绍了医院接触追踪(CATCH),这是一种专门为医院环境中的医护人员设计的自动接触追踪系统。CATCH采用分布在整个医院单元的嵌入式设备来检测佩戴低功耗蓝牙(BLE)信标的医护人员之间的密切接触。我们首先根据现实世界重症监护病房(ICU)的不同环境特征和病房内不同空间医护人员的不同工作模式,确定了一组不同的接触者追踪方案。然后,我们开发了一套针对每种情况量身定制的新颖接触者追踪方法。CATCH已在一家大型医疗中心的ICU中部署并进行了评估,通过广泛的实验表明,在接触者追踪方面,CATCH比现有方法具有更高的准确性。此外,现实世界的案例研究强调了与标准接触者追踪做法相比,CATCH的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contact Tracing for Healthcare Workers in an Intensive Care Unit
Contact tracing is a powerful tool for mitigating the spread of COVID-19 during the pandemic. Front-line healthcare workers are particularly at high risk of infection in hospital units. This paper presents ContAct TraCing for Hospitals (CATCH), an automated contact tracing system designed specifically for healthcare workers in hospital environments. CATCH employs distributed embedded devices placed throughout a hospital unit to detect close contacts among healthcare workers wearing Bluetooth Low Energy (BLE) beacons. We first identify a set of distinct contact tracing scenarios based on the diverse environmental characteristics of a real-world intensive care unit (ICU) and the different working patterns of healthcare workers in different spaces within the unit. We then develop a suite of novel contact tracing methods tailored for each scenario. CATCH has been deployed and evaluated in the ICU of a major medical center, demonstrating superior accuracy in contact tracing over existing approaches through a wide range of experiments. Furthermore, the real-world case study highlights the effectiveness and efficiency of CATCH compared to standard contact tracing practices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信