Nicole Heussen, Ralf-Dieter Hilgers, William F. Rosenberger, Xiao Tan, Diane Uschner
{"title":"缺失结果数据的临床试验的随机化推断","authors":"Nicole Heussen, Ralf-Dieter Hilgers, William F. Rosenberger, Xiao Tan, Diane Uschner","doi":"10.1080/19466315.2023.2250119","DOIUrl":null,"url":null,"abstract":"AbstractRandomization-based inference is a natural way to analyze data from a clinical trial. But the presence of missing outcome data is problematic: if the data are removed, the randomization distribution is destroyed and randomization tests have no validity. In this paper we describe two approaches to imputing values for missing data that preserve the randomization distribution. We then compare these methods to population-based and parametric imputation approaches that are in standard use to compare error rates under both homogeneous and heterogeneous population models. We also describe randomization-based analogs of standard missing data mechanisms and describe a randomization-based procedure to determine if data are missing completely at random. We conclude that randomization-based methods are a reasonable approach to missing data that perform comparably to population-based methods.Keywords: Conditional reference setMissing completely at randomMissing at randomRandomization testDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. FundingThe author(s) reported there is no funding associated with the work featured in this article.","PeriodicalId":51280,"journal":{"name":"Statistics in Biopharmaceutical Research","volume":"79 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Randomization-Based Inference for Clinical Trials with Missing Outcome Data\",\"authors\":\"Nicole Heussen, Ralf-Dieter Hilgers, William F. Rosenberger, Xiao Tan, Diane Uschner\",\"doi\":\"10.1080/19466315.2023.2250119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractRandomization-based inference is a natural way to analyze data from a clinical trial. But the presence of missing outcome data is problematic: if the data are removed, the randomization distribution is destroyed and randomization tests have no validity. In this paper we describe two approaches to imputing values for missing data that preserve the randomization distribution. We then compare these methods to population-based and parametric imputation approaches that are in standard use to compare error rates under both homogeneous and heterogeneous population models. We also describe randomization-based analogs of standard missing data mechanisms and describe a randomization-based procedure to determine if data are missing completely at random. We conclude that randomization-based methods are a reasonable approach to missing data that perform comparably to population-based methods.Keywords: Conditional reference setMissing completely at randomMissing at randomRandomization testDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. FundingThe author(s) reported there is no funding associated with the work featured in this article.\",\"PeriodicalId\":51280,\"journal\":{\"name\":\"Statistics in Biopharmaceutical Research\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Biopharmaceutical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19466315.2023.2250119\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Biopharmaceutical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19466315.2023.2250119","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Randomization-Based Inference for Clinical Trials with Missing Outcome Data
AbstractRandomization-based inference is a natural way to analyze data from a clinical trial. But the presence of missing outcome data is problematic: if the data are removed, the randomization distribution is destroyed and randomization tests have no validity. In this paper we describe two approaches to imputing values for missing data that preserve the randomization distribution. We then compare these methods to population-based and parametric imputation approaches that are in standard use to compare error rates under both homogeneous and heterogeneous population models. We also describe randomization-based analogs of standard missing data mechanisms and describe a randomization-based procedure to determine if data are missing completely at random. We conclude that randomization-based methods are a reasonable approach to missing data that perform comparably to population-based methods.Keywords: Conditional reference setMissing completely at randomMissing at randomRandomization testDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. FundingThe author(s) reported there is no funding associated with the work featured in this article.
期刊介绍:
Statistics in Biopharmaceutical Research ( SBR), publishes articles that focus on the needs of researchers and applied statisticians in biopharmaceutical industries; academic biostatisticians from schools of medicine, veterinary medicine, public health, and pharmacy; statisticians and quantitative analysts working in regulatory agencies (e.g., U.S. Food and Drug Administration and its counterpart in other countries); statisticians with an interest in adopting methodology presented in this journal to their own fields; and nonstatisticians with an interest in applying statistical methods to biopharmaceutical problems.
Statistics in Biopharmaceutical Research accepts papers that discuss appropriate statistical methodology and information regarding the use of statistics in all phases of research, development, and practice in the pharmaceutical, biopharmaceutical, device, and diagnostics industries. Articles should focus on the development of novel statistical methods, novel applications of current methods, or the innovative application of statistical principles that can be used by statistical practitioners in these disciplines. Areas of application may include statistical methods for drug discovery, including papers that address issues of multiplicity, sequential trials, adaptive designs, etc.; preclinical and clinical studies; genomics and proteomics; bioassay; biomarkers and surrogate markers; models and analyses of drug history, including pharmacoeconomics, product life cycle, detection of adverse events in clinical studies, and postmarketing risk assessment; regulatory guidelines, including issues of standardization of terminology (e.g., CDISC), tolerance and specification limits related to pharmaceutical practice, and novel methods of drug approval; and detection of adverse events in clinical and toxicological studies. Tutorial articles also are welcome. Articles should include demonstrable evidence of the usefulness of this methodology (presumably by means of an application).
The Editorial Board of SBR intends to ensure that the journal continually provides important, useful, and timely information. To accomplish this, the board strives to attract outstanding articles by seeing that each submission receives a careful, thorough, and prompt review.
Authors can choose to publish gold open access in this journal.