中性介质中高锰酸钾氧化有毒盐酸吖啶黄染料及TD-DFT:废水中染料的去除及动力学研究

Samia M. Ibrahim, Ahmed F. Al-Hossainy, Hazim M. Ali, Mohamed Abd El Aal, Nasser Farhan
{"title":"中性介质中高锰酸钾氧化有毒盐酸吖啶黄染料及TD-DFT:废水中染料的去除及动力学研究","authors":"Samia M. Ibrahim, Ahmed F. Al-Hossainy, Hazim M. Ali, Mohamed Abd El Aal, Nasser Farhan","doi":"10.33696/nanotechnol.4.045","DOIUrl":null,"url":null,"abstract":"Fabrication of dye thin films is accomplished through physical vapor deposition with a thickness of 150 ± 5 nm. Kinetically, the reduction of permanganate ion as a multi-equivalent oxidant by acriflavine hydrochloride (ACFH) in a neutral medium has been studied spectrophotometrically. In the presence of a pseudo-first-order reaction, the experimental results suggest fractional first-order kinetics in [ACFH] and a first-order dependency in [MnO4-]. The spectroscopic identification of intermediate species involving complexes of Mn (V) coordination has been examined along with a unique nitro-derivative-ACF (NDACF) synthesis. Based on the estimated activation values, which are in great agreement with the kinetic data obtained, oxidation reaction mechanism was postulated and described. The data exactly determine that ΔEgOpt the amount decreases from 1.566 eV for [ACFH]TF to 1.36 eV for [NDACF]TF for isolated molecules in the gaseous state utilizing TD-DFT model, HOMO and LUMO calculation. The improvements in kinetical and optical properties were achieved, and it is promising to use [NDACF]TF as solar cell application.","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxidation and TD-DFT of Toxic Acriflavine Hydrochloride Dye by Potassium Permanganate in Neutral Media: Kinetics and Removal of Dyes from Wastewater\",\"authors\":\"Samia M. Ibrahim, Ahmed F. Al-Hossainy, Hazim M. Ali, Mohamed Abd El Aal, Nasser Farhan\",\"doi\":\"10.33696/nanotechnol.4.045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fabrication of dye thin films is accomplished through physical vapor deposition with a thickness of 150 ± 5 nm. Kinetically, the reduction of permanganate ion as a multi-equivalent oxidant by acriflavine hydrochloride (ACFH) in a neutral medium has been studied spectrophotometrically. In the presence of a pseudo-first-order reaction, the experimental results suggest fractional first-order kinetics in [ACFH] and a first-order dependency in [MnO4-]. The spectroscopic identification of intermediate species involving complexes of Mn (V) coordination has been examined along with a unique nitro-derivative-ACF (NDACF) synthesis. Based on the estimated activation values, which are in great agreement with the kinetic data obtained, oxidation reaction mechanism was postulated and described. The data exactly determine that ΔEgOpt the amount decreases from 1.566 eV for [ACFH]TF to 1.36 eV for [NDACF]TF for isolated molecules in the gaseous state utilizing TD-DFT model, HOMO and LUMO calculation. The improvements in kinetical and optical properties were achieved, and it is promising to use [NDACF]TF as solar cell application.\",\"PeriodicalId\":94095,\"journal\":{\"name\":\"Journal of nanotechnology and nanomaterials\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of nanotechnology and nanomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33696/nanotechnol.4.045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanotechnology and nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33696/nanotechnol.4.045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过物理气相沉积技术制备了厚度为150±5 nm的染料薄膜。用分光光度法研究了盐酸吖啶黄碱(ACFH)在中性介质中作为多当量氧化剂还原高锰酸盐离子的动力学过程。在存在伪一级反应的情况下,实验结果表明[ACFH]的分数一级动力学和[MnO4-]的一级依赖性。本文研究了一种独特的硝基衍生物- acf (NDACF)合成方法,并对涉及Mn (V)配位配合物的中间物质进行了光谱鉴定。根据估计的活化值,与得到的动力学数据基本一致,对氧化反应机理进行了假设和描述。利用TD-DFT模型、HOMO和LUMO计算,数据准确地确定了ΔEgOpt在气态分离分子中,[ACFH]TF的量从1.566 eV减少到[NDACF]TF的1.36 eV。研究表明,[NDACF]TF在太阳能电池中的应用前景广阔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oxidation and TD-DFT of Toxic Acriflavine Hydrochloride Dye by Potassium Permanganate in Neutral Media: Kinetics and Removal of Dyes from Wastewater
Fabrication of dye thin films is accomplished through physical vapor deposition with a thickness of 150 ± 5 nm. Kinetically, the reduction of permanganate ion as a multi-equivalent oxidant by acriflavine hydrochloride (ACFH) in a neutral medium has been studied spectrophotometrically. In the presence of a pseudo-first-order reaction, the experimental results suggest fractional first-order kinetics in [ACFH] and a first-order dependency in [MnO4-]. The spectroscopic identification of intermediate species involving complexes of Mn (V) coordination has been examined along with a unique nitro-derivative-ACF (NDACF) synthesis. Based on the estimated activation values, which are in great agreement with the kinetic data obtained, oxidation reaction mechanism was postulated and described. The data exactly determine that ΔEgOpt the amount decreases from 1.566 eV for [ACFH]TF to 1.36 eV for [NDACF]TF for isolated molecules in the gaseous state utilizing TD-DFT model, HOMO and LUMO calculation. The improvements in kinetical and optical properties were achieved, and it is promising to use [NDACF]TF as solar cell application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信