基于欧氏距离矩阵的快速故障检测与排除

IF 3.1 3区 地球科学 Q1 ENGINEERING, AEROSPACE
Derek Knowles, Grace Gao
{"title":"基于欧氏距离矩阵的快速故障检测与排除","authors":"Derek Knowles, Grace Gao","doi":"10.33012/navi.555","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> Faulty signals from global navigation satellite systems (GNSSs) often lead to erroneous position estimates. A variety of fault detection and exclusion (FDE) methods have been proposed in prior research to both detect and exclude faulty measurements. This paper introduces a new technique for the FDE of GNSS measurements using Euclidean distance matrices. After a brief introduction to Euclidean distance matrices, both the detection and exclusion strategy is explained in detail. Euclidean distance matrix-based FDE is verified in two separate real-world data sets and proven to accurately detect and exclude GNSS faults on an average of 1.4-times faster than residual-based FDE and 70-times faster than solution separation FDE.","PeriodicalId":56075,"journal":{"name":"Navigation-Journal of the Institute of Navigation","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Euclidean Distance Matrix-Based Rapid Fault Detection and Exclusion\",\"authors\":\"Derek Knowles, Grace Gao\",\"doi\":\"10.33012/navi.555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> Faulty signals from global navigation satellite systems (GNSSs) often lead to erroneous position estimates. A variety of fault detection and exclusion (FDE) methods have been proposed in prior research to both detect and exclude faulty measurements. This paper introduces a new technique for the FDE of GNSS measurements using Euclidean distance matrices. After a brief introduction to Euclidean distance matrices, both the detection and exclusion strategy is explained in detail. Euclidean distance matrix-based FDE is verified in two separate real-world data sets and proven to accurately detect and exclude GNSS faults on an average of 1.4-times faster than residual-based FDE and 70-times faster than solution separation FDE.\",\"PeriodicalId\":56075,\"journal\":{\"name\":\"Navigation-Journal of the Institute of Navigation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Navigation-Journal of the Institute of Navigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33012/navi.555\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Navigation-Journal of the Institute of Navigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33012/navi.555","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1

摘要

摘要全球卫星导航系统(gnss)的错误信号经常导致错误的位置估计。在以往的研究中,提出了各种故障检测和排除方法来检测和排除故障测量。本文介绍了一种利用欧氏距离矩阵进行GNSS测量FDE的新技术。在简要介绍欧几里得距离矩阵之后,详细解释了检测和排除策略。基于欧氏距离矩阵的FDE在两个独立的真实数据集中进行了验证,并被证明能够准确地检测和排除GNSS故障,平均速度比基于残差的FDE快1.4倍,比溶液分离FDE快70倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Euclidean Distance Matrix-Based Rapid Fault Detection and Exclusion

Abstract

Faulty signals from global navigation satellite systems (GNSSs) often lead to erroneous position estimates. A variety of fault detection and exclusion (FDE) methods have been proposed in prior research to both detect and exclude faulty measurements. This paper introduces a new technique for the FDE of GNSS measurements using Euclidean distance matrices. After a brief introduction to Euclidean distance matrices, both the detection and exclusion strategy is explained in detail. Euclidean distance matrix-based FDE is verified in two separate real-world data sets and proven to accurately detect and exclude GNSS faults on an average of 1.4-times faster than residual-based FDE and 70-times faster than solution separation FDE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Navigation-Journal of the Institute of Navigation
Navigation-Journal of the Institute of Navigation ENGINEERING, AEROSPACE-REMOTE SENSING
CiteScore
5.60
自引率
13.60%
发文量
31
期刊介绍: NAVIGATION is a quarterly journal published by The Institute of Navigation. The journal publishes original, peer-reviewed articles on all areas related to the science, engineering and art of Positioning, Navigation and Timing (PNT) covering land (including indoor use), sea, air and space applications. PNT technologies of interest encompass navigation satellite systems (both global and regional), inertial navigation, electro-optical systems including LiDAR and imaging sensors, and radio-frequency ranging and timing systems, including those using signals of opportunity from communication systems and other non-traditional PNT sources. Articles about PNT algorithms and methods, such as for error characterization and mitigation, integrity analysis, PNT signal processing and multi-sensor integration, are welcome. The journal also accepts articles on non-traditional applications of PNT systems, including remote sensing of the Earth’s surface or atmosphere, as well as selected historical and survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信