溶胶-凝胶法制备氧化铝- 15%氧化铈粉体的放电等离子烧结研究

{"title":"溶胶-凝胶法制备氧化铝- 15%氧化铈粉体的放电等离子烧结研究","authors":"","doi":"10.47176/jame.41.4.1006","DOIUrl":null,"url":null,"abstract":"In the present research, alumina-ceria particles were synthesized by a sol-gel method. The produced particles were characterized by X-ray diffraction and scanning electron microscopy. Then, alumina matrix composites containing 15 wt.% of ceria were densified under 80 MPa pressure at different temperatures by spark plasma sintering process. X-ray diffraction results showed that the powder produced before heat treatment has an amorphous structure, while alumina and ceria phases are formed after calcination at 800 °C. The produced particles have an average particle size of 250 nm. The effect of sintering temperature on the density of samples, grain size, and hardness of composites was investigated. The samples were densified at about 1400 °C, reaching a density of about 97% of the theoretical density. The microstructure analysis revealed that the composite grains have grown with increasing sintering temperature. The results declared that increasing the temperature and pressure in the sintering process enhances the density of the samples. The Vickers hardness of the composites increased with increasing sintering temperature, as the composite samples sintered at 1400 °C for 20 minutes at a pressure of 80 MPa had the highest Vickers hardness of about 15.3 GPa.","PeriodicalId":30992,"journal":{"name":"Journal of Advanced Materials in Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spark Plasma Sintering of Alumina- 15 wt.% Ceria Powder Prepared by Sol-Gel Method\",\"authors\":\"\",\"doi\":\"10.47176/jame.41.4.1006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present research, alumina-ceria particles were synthesized by a sol-gel method. The produced particles were characterized by X-ray diffraction and scanning electron microscopy. Then, alumina matrix composites containing 15 wt.% of ceria were densified under 80 MPa pressure at different temperatures by spark plasma sintering process. X-ray diffraction results showed that the powder produced before heat treatment has an amorphous structure, while alumina and ceria phases are formed after calcination at 800 °C. The produced particles have an average particle size of 250 nm. The effect of sintering temperature on the density of samples, grain size, and hardness of composites was investigated. The samples were densified at about 1400 °C, reaching a density of about 97% of the theoretical density. The microstructure analysis revealed that the composite grains have grown with increasing sintering temperature. The results declared that increasing the temperature and pressure in the sintering process enhances the density of the samples. The Vickers hardness of the composites increased with increasing sintering temperature, as the composite samples sintered at 1400 °C for 20 minutes at a pressure of 80 MPa had the highest Vickers hardness of about 15.3 GPa.\",\"PeriodicalId\":30992,\"journal\":{\"name\":\"Journal of Advanced Materials in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Materials in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47176/jame.41.4.1006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Materials in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47176/jame.41.4.1006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,采用溶胶-凝胶法合成了氧化铝-铈颗粒。用x射线衍射和扫描电镜对所制备的颗粒进行了表征。然后,在不同温度下,在80 MPa压力下,用火花等离子烧结技术致密化氧化铈含量为15 wt.%的氧化铝基复合材料。x射线衍射结果表明,热处理前生产的粉末具有非晶结构,而800℃煅烧后形成氧化铝和铈相。所生产的颗粒的平均粒径为250纳米。研究了烧结温度对样品密度、晶粒尺寸和复合材料硬度的影响。样品在1400℃左右致密化,密度达到理论密度的97%左右。显微组织分析表明,随着烧结温度的升高,复合材料晶粒逐渐长大。结果表明,在烧结过程中提高温度和压力可以提高样品的密度。复合材料的维氏硬度随烧结温度的升高而升高,在1400℃、80 MPa压力下烧结20分钟后,复合材料的维氏硬度最高,约为15.3 GPa。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spark Plasma Sintering of Alumina- 15 wt.% Ceria Powder Prepared by Sol-Gel Method
In the present research, alumina-ceria particles were synthesized by a sol-gel method. The produced particles were characterized by X-ray diffraction and scanning electron microscopy. Then, alumina matrix composites containing 15 wt.% of ceria were densified under 80 MPa pressure at different temperatures by spark plasma sintering process. X-ray diffraction results showed that the powder produced before heat treatment has an amorphous structure, while alumina and ceria phases are formed after calcination at 800 °C. The produced particles have an average particle size of 250 nm. The effect of sintering temperature on the density of samples, grain size, and hardness of composites was investigated. The samples were densified at about 1400 °C, reaching a density of about 97% of the theoretical density. The microstructure analysis revealed that the composite grains have grown with increasing sintering temperature. The results declared that increasing the temperature and pressure in the sintering process enhances the density of the samples. The Vickers hardness of the composites increased with increasing sintering temperature, as the composite samples sintered at 1400 °C for 20 minutes at a pressure of 80 MPa had the highest Vickers hardness of about 15.3 GPa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
50 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信