Mauricio Gómez Macedo, Jimena Olveres Montiel, Gibran Fuentes Pineda, Boris Escalante Ramírez, Fernando Arámbula Cosio
{"title":"通过深度学习检测胸片中的COVID-19","authors":"Mauricio Gómez Macedo, Jimena Olveres Montiel, Gibran Fuentes Pineda, Boris Escalante Ramírez, Fernando Arámbula Cosio","doi":"10.22201/dgtic.26832968e.2023.7.3","DOIUrl":null,"url":null,"abstract":"La pandemia por la COVID-19 generó una gran cantidad de adelantos computacionales para el área médica, en especial en su modalidad a distancia. Por estas razones, los algoritmos computacionales han tenido una gran incidencia, en especial aquellos que pertenecen al área de inteligencia artificial (IA), siendo un ejemplo representativo las redes neuronales convolucionales (siglas en inglés CNN, Convolutional Neural Networks). Este trabajo muestra el desarrollo de un sistema que apoya al diagnóstico de las enfermedades pulmonares generadas tanto por la COVID-19 como por la neumonía, mediante la implementación de una arquitectura de redes neuronales convolucionales aplicadas a imágenes de rayos X. El algoritmo que se presenta es capaz de distinguir si los pulmones se encuentran sanos o padecen alguna enfermedad como COVID-19 y neumonía.","PeriodicalId":495460,"journal":{"name":"TIES Revista de Tecnología e Innovación en Educación Superior","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detección de COVID-19 en radiografías de tórax mediante aprendizaje profundo\",\"authors\":\"Mauricio Gómez Macedo, Jimena Olveres Montiel, Gibran Fuentes Pineda, Boris Escalante Ramírez, Fernando Arámbula Cosio\",\"doi\":\"10.22201/dgtic.26832968e.2023.7.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"La pandemia por la COVID-19 generó una gran cantidad de adelantos computacionales para el área médica, en especial en su modalidad a distancia. Por estas razones, los algoritmos computacionales han tenido una gran incidencia, en especial aquellos que pertenecen al área de inteligencia artificial (IA), siendo un ejemplo representativo las redes neuronales convolucionales (siglas en inglés CNN, Convolutional Neural Networks). Este trabajo muestra el desarrollo de un sistema que apoya al diagnóstico de las enfermedades pulmonares generadas tanto por la COVID-19 como por la neumonía, mediante la implementación de una arquitectura de redes neuronales convolucionales aplicadas a imágenes de rayos X. El algoritmo que se presenta es capaz de distinguir si los pulmones se encuentran sanos o padecen alguna enfermedad como COVID-19 y neumonía.\",\"PeriodicalId\":495460,\"journal\":{\"name\":\"TIES Revista de Tecnología e Innovación en Educación Superior\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TIES Revista de Tecnología e Innovación en Educación Superior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22201/dgtic.26832968e.2023.7.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TIES Revista de Tecnología e Innovación en Educación Superior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22201/dgtic.26832968e.2023.7.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detección de COVID-19 en radiografías de tórax mediante aprendizaje profundo
La pandemia por la COVID-19 generó una gran cantidad de adelantos computacionales para el área médica, en especial en su modalidad a distancia. Por estas razones, los algoritmos computacionales han tenido una gran incidencia, en especial aquellos que pertenecen al área de inteligencia artificial (IA), siendo un ejemplo representativo las redes neuronales convolucionales (siglas en inglés CNN, Convolutional Neural Networks). Este trabajo muestra el desarrollo de un sistema que apoya al diagnóstico de las enfermedades pulmonares generadas tanto por la COVID-19 como por la neumonía, mediante la implementación de una arquitectura de redes neuronales convolucionales aplicadas a imágenes de rayos X. El algoritmo que se presenta es capaz de distinguir si los pulmones se encuentran sanos o padecen alguna enfermedad como COVID-19 y neumonía.