椭圆曲线族的Frobenius常数

IF 0.6 4区 数学 Q3 MATHEMATICS
Bidisha Roy, Masha Vlasenko
{"title":"椭圆曲线族的Frobenius常数","authors":"Bidisha Roy, Masha Vlasenko","doi":"10.1093/qmath/haad034","DOIUrl":null,"url":null,"abstract":"Abstract The paper deals with a class of periods, Frobenius constants, which describe monodromy of Frobenius solutions of differential equations arising in algebraic geometry. We represent Frobenius constants related to families of elliptic curves as iterated integrals of modular forms. Using the theory of periods of modular forms, we then witness some of these constants in terms of zeta values.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"33 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frobenius constants for families of elliptic curves\",\"authors\":\"Bidisha Roy, Masha Vlasenko\",\"doi\":\"10.1093/qmath/haad034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paper deals with a class of periods, Frobenius constants, which describe monodromy of Frobenius solutions of differential equations arising in algebraic geometry. We represent Frobenius constants related to families of elliptic curves as iterated integrals of modular forms. Using the theory of periods of modular forms, we then witness some of these constants in terms of zeta values.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/qmath/haad034\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/qmath/haad034","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了代数几何中描述微分方程Frobenius解的单态的一类周期Frobenius常数。我们将与椭圆曲线族相关的Frobenius常数表示为模形式的迭代积分。利用模形式的周期理论,我们用zeta值见证了其中的一些常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frobenius constants for families of elliptic curves
Abstract The paper deals with a class of periods, Frobenius constants, which describe monodromy of Frobenius solutions of differential equations arising in algebraic geometry. We represent Frobenius constants related to families of elliptic curves as iterated integrals of modular forms. Using the theory of periods of modular forms, we then witness some of these constants in terms of zeta values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信