基于GPS数据的公交站点运行状态分析

Q4 Engineering
Hongtao HUANG, Mei XIAO, Qian LIU, Xiuling MING, Haoyi BIAN
{"title":"基于GPS数据的公交站点运行状态分析","authors":"Hongtao HUANG, Mei XIAO, Qian LIU, Xiuling MING, Haoyi BIAN","doi":"10.3724/sp.j.1249.2023.03326","DOIUrl":null,"url":null,"abstract":"中国西安市公交车全球定位系统轨迹数据为例,建立平均服务时间和服务车数特征参数反映公交站的运行 状态,并通过分析站点内公交车辆速度、里程及加速度之间关系计算站台服务时间.使用Hopkins统计量 和轮廓系数分析可聚性和聚类数,结合高斯混合模型(Gaussian mixture model, GMM)对公交站运行状态进 行识别分类.构建 SMOTEENN-XGBoost(synthetic minority oversampling technique edited nearest neighbours extreme gradient boosting)站点运行状态预测模型 , 引入可解释机器学习框架 SHAP(Shapley additive explanation)分析站台属性、道路及环境对模型的影响.结果表明,公交站运行状态可分为3类,类型I的 平均服务时间最长,类型II的平均服务时间和服务车数最少,类型III的服务车数最多;所建立 SMOTEENN-XGBoost 模型的准确率为 94. 68%,精确率为 94. 69%,召回率为 91. 04%,F1分数为 92. 26%, 与极限梯度提升(extreme gradient boosting, XGBoost)、 逻辑回归(logistic regression, LR)、 随机森林 (random forest, RF)、梯度提升决策树(gradient boosting decision tree, GBDT)和 k 近邻(k-nearest neighbors, KNN)5种模型对比,本模型能够精准预测站点运行状态;对站点运行状态具有影响作用的因素按照重要程","PeriodicalId":35396,"journal":{"name":"Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of bus-stop operating state based on GPS data\",\"authors\":\"Hongtao HUANG, Mei XIAO, Qian LIU, Xiuling MING, Haoyi BIAN\",\"doi\":\"10.3724/sp.j.1249.2023.03326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"中国西安市公交车全球定位系统轨迹数据为例,建立平均服务时间和服务车数特征参数反映公交站的运行 状态,并通过分析站点内公交车辆速度、里程及加速度之间关系计算站台服务时间.使用Hopkins统计量 和轮廓系数分析可聚性和聚类数,结合高斯混合模型(Gaussian mixture model, GMM)对公交站运行状态进 行识别分类.构建 SMOTEENN-XGBoost(synthetic minority oversampling technique edited nearest neighbours extreme gradient boosting)站点运行状态预测模型 , 引入可解释机器学习框架 SHAP(Shapley additive explanation)分析站台属性、道路及环境对模型的影响.结果表明,公交站运行状态可分为3类,类型I的 平均服务时间最长,类型II的平均服务时间和服务车数最少,类型III的服务车数最多;所建立 SMOTEENN-XGBoost 模型的准确率为 94. 68%,精确率为 94. 69%,召回率为 91. 04%,F1分数为 92. 26%, 与极限梯度提升(extreme gradient boosting, XGBoost)、 逻辑回归(logistic regression, LR)、 随机森林 (random forest, RF)、梯度提升决策树(gradient boosting decision tree, GBDT)和 k 近邻(k-nearest neighbors, KNN)5种模型对比,本模型能够精准预测站点运行状态;对站点运行状态具有影响作用的因素按照重要程\",\"PeriodicalId\":35396,\"journal\":{\"name\":\"Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3724/sp.j.1249.2023.03326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3724/sp.j.1249.2023.03326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of bus-stop operating state based on GPS data
中国西安市公交车全球定位系统轨迹数据为例,建立平均服务时间和服务车数特征参数反映公交站的运行 状态,并通过分析站点内公交车辆速度、里程及加速度之间关系计算站台服务时间.使用Hopkins统计量 和轮廓系数分析可聚性和聚类数,结合高斯混合模型(Gaussian mixture model, GMM)对公交站运行状态进 行识别分类.构建 SMOTEENN-XGBoost(synthetic minority oversampling technique edited nearest neighbours extreme gradient boosting)站点运行状态预测模型 , 引入可解释机器学习框架 SHAP(Shapley additive explanation)分析站台属性、道路及环境对模型的影响.结果表明,公交站运行状态可分为3类,类型I的 平均服务时间最长,类型II的平均服务时间和服务车数最少,类型III的服务车数最多;所建立 SMOTEENN-XGBoost 模型的准确率为 94. 68%,精确率为 94. 69%,召回率为 91. 04%,F1分数为 92. 26%, 与极限梯度提升(extreme gradient boosting, XGBoost)、 逻辑回归(logistic regression, LR)、 随机森林 (random forest, RF)、梯度提升决策树(gradient boosting decision tree, GBDT)和 k 近邻(k-nearest neighbors, KNN)5种模型对比,本模型能够精准预测站点运行状态;对站点运行状态具有影响作用的因素按照重要程
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信