交换环点积图补的一些结果

IF 0.5 Q3 MATHEMATICS
S. Visweswaran
{"title":"交换环点积图补的一些结果","authors":"S. Visweswaran","doi":"10.1142/s1793557123502157","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a nonzero commutative ring with identity. Let [Formula: see text] be a positive integer. Let [Formula: see text] ([Formula: see text] times). The total dot product graph of [Formula: see text] denoted by [Formula: see text] is an undirected graph with vertex set which equals [Formula: see text] and distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text], where [Formula: see text] is the normal dot product of [Formula: see text] and [Formula: see text]. Let [Formula: see text] denote the set of all zero-divisors of [Formula: see text] and let us denote [Formula: see text] by [Formula: see text]. The zero-divisor dot product graph of [Formula: see text], denoted by [Formula: see text] is the subgraph of [Formula: see text] induced by [Formula: see text]. The graph [Formula: see text] (respectively, [Formula: see text]) was introduced and investigated by Badawi [Commun. Algebra 43(1) (2015) 43–50]. In this paper, we characterize [Formula: see text] such that [Formula: see text] (respectively, [Formula: see text]) is connected and determine the diameter and the radius of [Formula: see text] (respectively, [Formula: see text]) whenever it is connected. Moreover, if [Formula: see text] (respectively, [Formula: see text]) is connected, then we characterize [Formula: see text] such that [Formula: see text] (respectively, [Formula: see text]) admits a cut vertex.","PeriodicalId":45737,"journal":{"name":"Asian-European Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some results on the complement of the dot product graph of a commutative ring\",\"authors\":\"S. Visweswaran\",\"doi\":\"10.1142/s1793557123502157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be a nonzero commutative ring with identity. Let [Formula: see text] be a positive integer. Let [Formula: see text] ([Formula: see text] times). The total dot product graph of [Formula: see text] denoted by [Formula: see text] is an undirected graph with vertex set which equals [Formula: see text] and distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text], where [Formula: see text] is the normal dot product of [Formula: see text] and [Formula: see text]. Let [Formula: see text] denote the set of all zero-divisors of [Formula: see text] and let us denote [Formula: see text] by [Formula: see text]. The zero-divisor dot product graph of [Formula: see text], denoted by [Formula: see text] is the subgraph of [Formula: see text] induced by [Formula: see text]. The graph [Formula: see text] (respectively, [Formula: see text]) was introduced and investigated by Badawi [Commun. Algebra 43(1) (2015) 43–50]. In this paper, we characterize [Formula: see text] such that [Formula: see text] (respectively, [Formula: see text]) is connected and determine the diameter and the radius of [Formula: see text] (respectively, [Formula: see text]) whenever it is connected. Moreover, if [Formula: see text] (respectively, [Formula: see text]) is connected, then we characterize [Formula: see text] such that [Formula: see text] (respectively, [Formula: see text]) admits a cut vertex.\",\"PeriodicalId\":45737,\"journal\":{\"name\":\"Asian-European Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian-European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793557123502157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian-European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793557123502157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设[公式:见文]是一个具有恒等的非零交换环。设[公式:见文本]为正整数。设[公式:见文]([公式:见文]次)。用[公式:见文]表示的[公式:见文]的总点积图是顶点集等于[公式:见文]的无向图,且不同顶点[公式:见文]与[公式:见文]相邻当且仅当[公式:见文],其中[公式:见文]是[公式:见文]与[公式:见文]的法向点积。设[公式:见文]表示[公式:见文]的所有零因子的集合,并用[公式:见文]表示[公式:见文]。[公式:见文]的零因子点积图,用[公式:见文]表示,是由[公式:见文]引出的[公式:见文]的子图。图表[公式:见文](分别为[公式:见文])是由Badawi [common]引入并研究的。代数43(1)(2015)43 - 50 [j]。在本文中,我们对[公式:见文]进行表征,使[公式:见文](分别为[公式:见文])连通,并确定[公式:见文](分别为[公式:见文])在连通时的直径和半径。此外,如果[公式:见文](分别为[公式:见文])是连通的,那么我们对[公式:见文]进行表征,使[公式:见文](分别为[公式:见文])允许一个切顶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some results on the complement of the dot product graph of a commutative ring
Let [Formula: see text] be a nonzero commutative ring with identity. Let [Formula: see text] be a positive integer. Let [Formula: see text] ([Formula: see text] times). The total dot product graph of [Formula: see text] denoted by [Formula: see text] is an undirected graph with vertex set which equals [Formula: see text] and distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text], where [Formula: see text] is the normal dot product of [Formula: see text] and [Formula: see text]. Let [Formula: see text] denote the set of all zero-divisors of [Formula: see text] and let us denote [Formula: see text] by [Formula: see text]. The zero-divisor dot product graph of [Formula: see text], denoted by [Formula: see text] is the subgraph of [Formula: see text] induced by [Formula: see text]. The graph [Formula: see text] (respectively, [Formula: see text]) was introduced and investigated by Badawi [Commun. Algebra 43(1) (2015) 43–50]. In this paper, we characterize [Formula: see text] such that [Formula: see text] (respectively, [Formula: see text]) is connected and determine the diameter and the radius of [Formula: see text] (respectively, [Formula: see text]) whenever it is connected. Moreover, if [Formula: see text] (respectively, [Formula: see text]) is connected, then we characterize [Formula: see text] such that [Formula: see text] (respectively, [Formula: see text]) admits a cut vertex.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
169
期刊介绍: Asian-European Journal of Mathematics is an international journal which is devoted to original research in the field of pure and applied mathematics. The aim of the journal is to provide a medium by which new ideas can be discussed among researchers from diverse fields in mathematics. It publishes high quality research papers in the fields of contemporary pure and applied mathematics with a broad range of topics including algebra, analysis, topology, geometry, functional analysis, number theory, differential equations, operational research, combinatorics, theoretical statistics and probability, theoretical computer science and logic. Although the journal focuses on the original research articles, it also welcomes survey articles and short notes. All papers will be peer-reviewed within approximately four months.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信