{"title":"有限约简环的零因子图的谱","authors":"Gahininath Sonawane, Ganesh S. Kadu, Y. M. Borse","doi":"10.1142/s0219498825500823","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a finite reduced ring with [Formula: see text] maximal ideals [Formula: see text] and let [Formula: see text] be the zero-divisor graph associated to [Formula: see text] The class of rings [Formula: see text] contains the Boolean rings as a subclass. When [Formula: see text] for all [Formula: see text] where [Formula: see text] is a finite field, we associate two [Formula: see text] sized matrices [Formula: see text] and [Formula: see text] to the graph [Formula: see text] having combinatorial entries and use these matrices to determine the spectrum of this graph. More precisely, we show that every eigenvalue of [Formula: see text] and of [Formula: see text] is an eigenvalue of [Formula: see text] To do this, we give a recursive description of the adjacency matrix of this graph and also exhibit its equitable partition. This is used in computing the determinant, rank and nullity of the adjacency matrix. Further, we propose that the eigenvalues of [Formula: see text] [Formula: see text] and the eigenvalue [Formula: see text] exhaust all the eigenvalues of [Formula: see text]","PeriodicalId":54888,"journal":{"name":"Journal of Algebra and Its Applications","volume":"15 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectra of Zero-Divisor Graphs of Finite Reduced Rings\",\"authors\":\"Gahininath Sonawane, Ganesh S. Kadu, Y. M. Borse\",\"doi\":\"10.1142/s0219498825500823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be a finite reduced ring with [Formula: see text] maximal ideals [Formula: see text] and let [Formula: see text] be the zero-divisor graph associated to [Formula: see text] The class of rings [Formula: see text] contains the Boolean rings as a subclass. When [Formula: see text] for all [Formula: see text] where [Formula: see text] is a finite field, we associate two [Formula: see text] sized matrices [Formula: see text] and [Formula: see text] to the graph [Formula: see text] having combinatorial entries and use these matrices to determine the spectrum of this graph. More precisely, we show that every eigenvalue of [Formula: see text] and of [Formula: see text] is an eigenvalue of [Formula: see text] To do this, we give a recursive description of the adjacency matrix of this graph and also exhibit its equitable partition. This is used in computing the determinant, rank and nullity of the adjacency matrix. Further, we propose that the eigenvalues of [Formula: see text] [Formula: see text] and the eigenvalue [Formula: see text] exhaust all the eigenvalues of [Formula: see text]\",\"PeriodicalId\":54888,\"journal\":{\"name\":\"Journal of Algebra and Its Applications\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219498825500823\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219498825500823","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Spectra of Zero-Divisor Graphs of Finite Reduced Rings
Let [Formula: see text] be a finite reduced ring with [Formula: see text] maximal ideals [Formula: see text] and let [Formula: see text] be the zero-divisor graph associated to [Formula: see text] The class of rings [Formula: see text] contains the Boolean rings as a subclass. When [Formula: see text] for all [Formula: see text] where [Formula: see text] is a finite field, we associate two [Formula: see text] sized matrices [Formula: see text] and [Formula: see text] to the graph [Formula: see text] having combinatorial entries and use these matrices to determine the spectrum of this graph. More precisely, we show that every eigenvalue of [Formula: see text] and of [Formula: see text] is an eigenvalue of [Formula: see text] To do this, we give a recursive description of the adjacency matrix of this graph and also exhibit its equitable partition. This is used in computing the determinant, rank and nullity of the adjacency matrix. Further, we propose that the eigenvalues of [Formula: see text] [Formula: see text] and the eigenvalue [Formula: see text] exhaust all the eigenvalues of [Formula: see text]
期刊介绍:
The Journal of Algebra and Its Applications will publish papers both on theoretical and on applied aspects of Algebra. There is special interest in papers that point out innovative links between areas of Algebra and fields of application. As the field of Algebra continues to experience tremendous growth and diversification, we intend to provide the mathematical community with a central source for information on both the theoretical and the applied aspects of the discipline. While the journal will be primarily devoted to the publication of original research, extraordinary expository articles that encourage communication between algebraists and experts on areas of application as well as those presenting the state of the art on a given algebraic sub-discipline will be considered.