{"title":"基于ScRNA-Seq数据零值识别的数据平滑填充方法","authors":"Linfeng Jiang, Yuan Zhu","doi":"10.5121/csit.2023.131802","DOIUrl":null,"url":null,"abstract":"Single-cell RNA sequencing (scRNA-seq) determines RNA expression at single-cell resolution. It provides a powerful tool for studying immunity, regulation, and other life activities of cells. However, due to the limitations of the sequencing technique, the scRNA-seq data are represented with sparsity, which contains missing gene values, i.e., zero values, called dropout. Therefore, it is necessary to impute missing values before analyzing scRNA-seq data. However, existing imputation computation methods often only focus on the identification of technical zeros or imputing all zeros based on cell similarity. This study proposes a new method (SFAG) to reconstruct the gene expression relationship matrix by using graph regularization technology to preserve the high-dimensional manifold information of the data, and to mine the relationship between genes and cells in the data, and then uses a method of averaging the clustering results to fill in the identified technical zeros. Experimental results show that SFAG can help improve downstream analysis and reconstruct cell trajectory.","PeriodicalId":91205,"journal":{"name":"Artificial intelligence and applications (Commerce, Calif.)","volume":"85 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Smoothing Filling Method based on ScRNA-Seq Data Zero-Value Identification\",\"authors\":\"Linfeng Jiang, Yuan Zhu\",\"doi\":\"10.5121/csit.2023.131802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-cell RNA sequencing (scRNA-seq) determines RNA expression at single-cell resolution. It provides a powerful tool for studying immunity, regulation, and other life activities of cells. However, due to the limitations of the sequencing technique, the scRNA-seq data are represented with sparsity, which contains missing gene values, i.e., zero values, called dropout. Therefore, it is necessary to impute missing values before analyzing scRNA-seq data. However, existing imputation computation methods often only focus on the identification of technical zeros or imputing all zeros based on cell similarity. This study proposes a new method (SFAG) to reconstruct the gene expression relationship matrix by using graph regularization technology to preserve the high-dimensional manifold information of the data, and to mine the relationship between genes and cells in the data, and then uses a method of averaging the clustering results to fill in the identified technical zeros. Experimental results show that SFAG can help improve downstream analysis and reconstruct cell trajectory.\",\"PeriodicalId\":91205,\"journal\":{\"name\":\"Artificial intelligence and applications (Commerce, Calif.)\",\"volume\":\"85 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence and applications (Commerce, Calif.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2023.131802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence and applications (Commerce, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2023.131802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data Smoothing Filling Method based on ScRNA-Seq Data Zero-Value Identification
Single-cell RNA sequencing (scRNA-seq) determines RNA expression at single-cell resolution. It provides a powerful tool for studying immunity, regulation, and other life activities of cells. However, due to the limitations of the sequencing technique, the scRNA-seq data are represented with sparsity, which contains missing gene values, i.e., zero values, called dropout. Therefore, it is necessary to impute missing values before analyzing scRNA-seq data. However, existing imputation computation methods often only focus on the identification of technical zeros or imputing all zeros based on cell similarity. This study proposes a new method (SFAG) to reconstruct the gene expression relationship matrix by using graph regularization technology to preserve the high-dimensional manifold information of the data, and to mine the relationship between genes and cells in the data, and then uses a method of averaging the clustering results to fill in the identified technical zeros. Experimental results show that SFAG can help improve downstream analysis and reconstruct cell trajectory.