用DSC技术测定Lbe热性能的实验研究进展

IF 0.5 Q4 NUCLEAR SCIENCE & TECHNOLOGY
Satya Saraswat, Nicola Forgione, Massimo Emilio Angiolini
{"title":"用DSC技术测定Lbe热性能的实验研究进展","authors":"Satya Saraswat, Nicola Forgione, Massimo Emilio Angiolini","doi":"10.1115/1.4063572","DOIUrl":null,"url":null,"abstract":"Abstract The differential scanning calorimetry (DSC) method has recently emerged as a sophisticated and precise technique for promising contributions to the thermal analysis of various materials, including heavy liquid metal (HLM) coolants. However, there is a lack of experimental studies on the thermal properties of lead-based fluids, such as lead–bismuth eutectic (LBE) and lead–lithium eutectic, which are potential candidates for use as coolants, breeders, and neutron multipliers in advanced nuclear systems like the fourth-generation lead-cooled fast reactor. The available experimental data on the thermal properties of LBE and other lead-based fluids is limited, and the measurements have significant uncertainty. In addition, the composition of components used in the previous studies is inconsistent, and the environmental conditions were often unknown. Therefore, to fill these gaps and advance the thermal properties measurement technique for heavy liquid metal coolants, ENEA Brasimone, in collaboration with DICI-UNIPI, has installed a DSC instrument setup. The experiments performed at the installed DSC setup are focused on measuring some essential thermal properties of LBE using DSC. The experience gained from this work will facilitate the measurement of other fluids based on lead alloy, especially lead–lithium eutectic, a potential candidate for breeder, coolant, and neutron multiplier in demonstration power plant fusion reactors. This study represents the first effort to advance the DSC approach for accurately measuring the thermal characteristics of heavy liquid metals that are highly reactive, such as lead–lithium, which has significant potential in advanced nuclear systems.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancement Towards the Experimental Measurement of the Lbe Thermal Properties Using DSC Technique\",\"authors\":\"Satya Saraswat, Nicola Forgione, Massimo Emilio Angiolini\",\"doi\":\"10.1115/1.4063572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The differential scanning calorimetry (DSC) method has recently emerged as a sophisticated and precise technique for promising contributions to the thermal analysis of various materials, including heavy liquid metal (HLM) coolants. However, there is a lack of experimental studies on the thermal properties of lead-based fluids, such as lead–bismuth eutectic (LBE) and lead–lithium eutectic, which are potential candidates for use as coolants, breeders, and neutron multipliers in advanced nuclear systems like the fourth-generation lead-cooled fast reactor. The available experimental data on the thermal properties of LBE and other lead-based fluids is limited, and the measurements have significant uncertainty. In addition, the composition of components used in the previous studies is inconsistent, and the environmental conditions were often unknown. Therefore, to fill these gaps and advance the thermal properties measurement technique for heavy liquid metal coolants, ENEA Brasimone, in collaboration with DICI-UNIPI, has installed a DSC instrument setup. The experiments performed at the installed DSC setup are focused on measuring some essential thermal properties of LBE using DSC. The experience gained from this work will facilitate the measurement of other fluids based on lead alloy, especially lead–lithium eutectic, a potential candidate for breeder, coolant, and neutron multiplier in demonstration power plant fusion reactors. This study represents the first effort to advance the DSC approach for accurately measuring the thermal characteristics of heavy liquid metals that are highly reactive, such as lead–lithium, which has significant potential in advanced nuclear systems.\",\"PeriodicalId\":16756,\"journal\":{\"name\":\"Journal of Nuclear Engineering and Radiation Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Engineering and Radiation Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Engineering and Radiation Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

差示扫描量热法(DSC)最近成为一种复杂而精确的技术,对各种材料的热分析有很大的贡献,包括重液态金属(HLM)冷却剂。然而,缺乏对铅-铋共晶(LBE)和铅-锂共晶等铅基流体热性能的实验研究,这些流体是第四代铅冷快堆等先进核系统中用作冷却剂、增殖剂和中子倍增器的潜在候选者。关于LBE和其他铅基流体热性能的实验数据有限,测量结果具有很大的不确定性。此外,以往研究中使用的组分组成不一致,环境条件往往未知。因此,为了填补这些空白并推进重液态金属冷却剂的热性能测量技术,ENEA Brasimone与DICI-UNIPI合作,安装了DSC仪器装置。在安装的DSC装置上进行的实验主要是用DSC测量LBE的一些基本热性能。从这项工作中获得的经验将有助于测量基于铅合金的其他流体,特别是铅锂共晶,铅锂共晶是示范电厂聚变反应堆中增殖剂、冷却剂和中子倍增器的潜在候选。这项研究首次努力推进DSC方法,以精确测量高活性重金属的热特性,如铅锂,在先进的核系统中具有重要的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancement Towards the Experimental Measurement of the Lbe Thermal Properties Using DSC Technique
Abstract The differential scanning calorimetry (DSC) method has recently emerged as a sophisticated and precise technique for promising contributions to the thermal analysis of various materials, including heavy liquid metal (HLM) coolants. However, there is a lack of experimental studies on the thermal properties of lead-based fluids, such as lead–bismuth eutectic (LBE) and lead–lithium eutectic, which are potential candidates for use as coolants, breeders, and neutron multipliers in advanced nuclear systems like the fourth-generation lead-cooled fast reactor. The available experimental data on the thermal properties of LBE and other lead-based fluids is limited, and the measurements have significant uncertainty. In addition, the composition of components used in the previous studies is inconsistent, and the environmental conditions were often unknown. Therefore, to fill these gaps and advance the thermal properties measurement technique for heavy liquid metal coolants, ENEA Brasimone, in collaboration with DICI-UNIPI, has installed a DSC instrument setup. The experiments performed at the installed DSC setup are focused on measuring some essential thermal properties of LBE using DSC. The experience gained from this work will facilitate the measurement of other fluids based on lead alloy, especially lead–lithium eutectic, a potential candidate for breeder, coolant, and neutron multiplier in demonstration power plant fusion reactors. This study represents the first effort to advance the DSC approach for accurately measuring the thermal characteristics of heavy liquid metals that are highly reactive, such as lead–lithium, which has significant potential in advanced nuclear systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
56
期刊介绍: The Journal of Nuclear Engineering and Radiation Science is ASME’s latest title within the energy sector. The publication is for specialists in the nuclear/power engineering areas of industry, academia, and government.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信