Lauro Mariano Ferreira, Rodrigo Perito Cardoso, Ana Sofia C. M. D’Oliveira
{"title":"铌渗硼:处理温度和时间的影响","authors":"Lauro Mariano Ferreira, Rodrigo Perito Cardoso, Ana Sofia C. M. D’Oliveira","doi":"10.1520/mpc20220122","DOIUrl":null,"url":null,"abstract":"The application of niobium borides to components such as lamination cylinders, hightemperature devices, and medical equipment shows their importance and versatility in engineering. To improve niobium’s mechanical resistance and possible oxidation resistance at temperature, this research applied boronizing to pure niobium, carried out with double pack cementation. Boronizing at 950°C and 1,100°C was carried out for 1 and 4 h. Ekabor commercial pack mixture with a nominal chemical composition of 90 % silicon carbide, 5 % boron carbide, and 5 % potassium tetrafluoroborate was used with and without 10 percent by weight (wt%) silicon addition. Scanning electron microscope, energy dispersive spectroscopy, and X-ray diffraction analyses and microhardness tests were used to characterize the treated samples. A continuous high-hardness 2,394-HV0.1 (23.5 GPa) niobium diboride layer was formed at the surface of the niobium substrate. A maximum layer thickness of 53.6 ± 2.9 µm was measured after 4 h at 1,100°C, whereas after 1 h at 950°C, no visible layer was identified with the applied characterization techniques, suggesting a threshold in this temperature. Adding 10 wt% silicon to the pack mixture impacted the kinetics of the diffusion process, which resulted in an increase in layer thickness of 72.6 ± 10.1 µm after processing for 1 h at 1,100°C, but cracks formed in the processed surface.","PeriodicalId":18234,"journal":{"name":"Materials Performance and Characterization","volume":"23 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Niobium Boronizing: Influence of the Treatment Temperature and Time\",\"authors\":\"Lauro Mariano Ferreira, Rodrigo Perito Cardoso, Ana Sofia C. M. D’Oliveira\",\"doi\":\"10.1520/mpc20220122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of niobium borides to components such as lamination cylinders, hightemperature devices, and medical equipment shows their importance and versatility in engineering. To improve niobium’s mechanical resistance and possible oxidation resistance at temperature, this research applied boronizing to pure niobium, carried out with double pack cementation. Boronizing at 950°C and 1,100°C was carried out for 1 and 4 h. Ekabor commercial pack mixture with a nominal chemical composition of 90 % silicon carbide, 5 % boron carbide, and 5 % potassium tetrafluoroborate was used with and without 10 percent by weight (wt%) silicon addition. Scanning electron microscope, energy dispersive spectroscopy, and X-ray diffraction analyses and microhardness tests were used to characterize the treated samples. A continuous high-hardness 2,394-HV0.1 (23.5 GPa) niobium diboride layer was formed at the surface of the niobium substrate. A maximum layer thickness of 53.6 ± 2.9 µm was measured after 4 h at 1,100°C, whereas after 1 h at 950°C, no visible layer was identified with the applied characterization techniques, suggesting a threshold in this temperature. Adding 10 wt% silicon to the pack mixture impacted the kinetics of the diffusion process, which resulted in an increase in layer thickness of 72.6 ± 10.1 µm after processing for 1 h at 1,100°C, but cracks formed in the processed surface.\",\"PeriodicalId\":18234,\"journal\":{\"name\":\"Materials Performance and Characterization\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Performance and Characterization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1520/mpc20220122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Performance and Characterization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/mpc20220122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Niobium Boronizing: Influence of the Treatment Temperature and Time
The application of niobium borides to components such as lamination cylinders, hightemperature devices, and medical equipment shows their importance and versatility in engineering. To improve niobium’s mechanical resistance and possible oxidation resistance at temperature, this research applied boronizing to pure niobium, carried out with double pack cementation. Boronizing at 950°C and 1,100°C was carried out for 1 and 4 h. Ekabor commercial pack mixture with a nominal chemical composition of 90 % silicon carbide, 5 % boron carbide, and 5 % potassium tetrafluoroborate was used with and without 10 percent by weight (wt%) silicon addition. Scanning electron microscope, energy dispersive spectroscopy, and X-ray diffraction analyses and microhardness tests were used to characterize the treated samples. A continuous high-hardness 2,394-HV0.1 (23.5 GPa) niobium diboride layer was formed at the surface of the niobium substrate. A maximum layer thickness of 53.6 ± 2.9 µm was measured after 4 h at 1,100°C, whereas after 1 h at 950°C, no visible layer was identified with the applied characterization techniques, suggesting a threshold in this temperature. Adding 10 wt% silicon to the pack mixture impacted the kinetics of the diffusion process, which resulted in an increase in layer thickness of 72.6 ± 10.1 µm after processing for 1 h at 1,100°C, but cracks formed in the processed surface.
期刊介绍:
The journal is published continuously in one annual issue online. Papers are published online as they are approved and edited. Special Issues may also be published on specific topics of interest to our readers. Materials Performance and Characterization provides high-quality papers on both the theoretical and practical aspects of the processing, structure, properties, and performance of materials used in: -mechanical -transportation -aerospace -energy and -medical devices. -Materials Covered: (but not limited to) -Metals and alloys -Glass and ceramics -Polymers -Composite materials -Textiles and nanomaterials