Sandra C. Wind, Mark D. Hannington, David A. Schneider, Jan Fietzke, Stephanos P. Kilias, J. Bruce Gemmell
{"title":"基克拉迪斯大陆弧后多金属矿脉中热液重晶石的成因及碳酸盐岩矿床","authors":"Sandra C. Wind, Mark D. Hannington, David A. Schneider, Jan Fietzke, Stephanos P. Kilias, J. Bruce Gemmell","doi":"10.5382/econgeo.5028","DOIUrl":null,"url":null,"abstract":"Abstract Polymetallic veins and breccias and carbonate-replacement ore deposits in the Cyclades continental back arc, Greece, formed from a range of fluid and metal sources strongly influenced by the dynamics of the late Mesozoic-Cenozoic Hellenic subduction system. These complexities are recorded in the isotopic signatures of hydrothermal barite. We investigated 17 mineral occurrences on four Cycladic islands and from Lavrion on the mainland. Here, barite occurs in almost all deposit types of Miocene to Quaternary age. We used a multiple isotope and geochemical approach to characterize the barite in each deposit, including mineral separate analysis of δ34S and δ18O and laser ablation-inductively coupled plasma-mass spectrometry of 87Sr/86Sr and δ34S. Barite from carbonate-hosted vein and breccia Pb-Zn-Ag mineralization on Lavrion has a wide range of δ34S (2–20‰) and δ18O (10–15‰) values, reflecting a mix of magmatic and surface-derived fluids that have exchanged with isotopically heavy oxygen in the carbonate host rock. Sulfur (δ34S = 10–13‰) and oxygen (δ18O = 9–13‰) values of barite from the carbonate-hosted vein iron and barite mineralization on Serifos are permissive of a magmatic sulfate component. Barite from epithermal base and/or precious metal deposits on Milos has δ34S (17–28‰) and δ18O (9–11‰) values that are similar to modern seawater. In contrast, barite from vein-type deposits on Antiparos and Mykonos has a wide range of δ34S (16–37‰) and δ18O (4–12‰) values, indicating a seawater sulfate source modified by mixing or equilibration of the hydrothermal fluids with the host rocks. Strontium isotope ratios of barite vary regionally, with 87Sr/86Sr ≥ 0.711 in the central Cyclades and 87Sr/86Sr ≤ 0.711 in the west Cyclades, confirming the strong influence of upper crustal rocks on the sources of fluids, Sr, and Ba in the formation of ore.","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":"27 3","pages":"0"},"PeriodicalIF":5.5000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Origin of Hydrothermal Barite in Polymetallic Veins and Carbonate-Hosted Deposits of the Cyclades Continental Back Arc\",\"authors\":\"Sandra C. Wind, Mark D. Hannington, David A. Schneider, Jan Fietzke, Stephanos P. Kilias, J. Bruce Gemmell\",\"doi\":\"10.5382/econgeo.5028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Polymetallic veins and breccias and carbonate-replacement ore deposits in the Cyclades continental back arc, Greece, formed from a range of fluid and metal sources strongly influenced by the dynamics of the late Mesozoic-Cenozoic Hellenic subduction system. These complexities are recorded in the isotopic signatures of hydrothermal barite. We investigated 17 mineral occurrences on four Cycladic islands and from Lavrion on the mainland. Here, barite occurs in almost all deposit types of Miocene to Quaternary age. We used a multiple isotope and geochemical approach to characterize the barite in each deposit, including mineral separate analysis of δ34S and δ18O and laser ablation-inductively coupled plasma-mass spectrometry of 87Sr/86Sr and δ34S. Barite from carbonate-hosted vein and breccia Pb-Zn-Ag mineralization on Lavrion has a wide range of δ34S (2–20‰) and δ18O (10–15‰) values, reflecting a mix of magmatic and surface-derived fluids that have exchanged with isotopically heavy oxygen in the carbonate host rock. Sulfur (δ34S = 10–13‰) and oxygen (δ18O = 9–13‰) values of barite from the carbonate-hosted vein iron and barite mineralization on Serifos are permissive of a magmatic sulfate component. Barite from epithermal base and/or precious metal deposits on Milos has δ34S (17–28‰) and δ18O (9–11‰) values that are similar to modern seawater. In contrast, barite from vein-type deposits on Antiparos and Mykonos has a wide range of δ34S (16–37‰) and δ18O (4–12‰) values, indicating a seawater sulfate source modified by mixing or equilibration of the hydrothermal fluids with the host rocks. Strontium isotope ratios of barite vary regionally, with 87Sr/86Sr ≥ 0.711 in the central Cyclades and 87Sr/86Sr ≤ 0.711 in the west Cyclades, confirming the strong influence of upper crustal rocks on the sources of fluids, Sr, and Ba in the formation of ore.\",\"PeriodicalId\":11469,\"journal\":{\"name\":\"Economic Geology\",\"volume\":\"27 3\",\"pages\":\"0\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2023-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Economic Geology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5382/econgeo.5028\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economic Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5382/econgeo.5028","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Origin of Hydrothermal Barite in Polymetallic Veins and Carbonate-Hosted Deposits of the Cyclades Continental Back Arc
Abstract Polymetallic veins and breccias and carbonate-replacement ore deposits in the Cyclades continental back arc, Greece, formed from a range of fluid and metal sources strongly influenced by the dynamics of the late Mesozoic-Cenozoic Hellenic subduction system. These complexities are recorded in the isotopic signatures of hydrothermal barite. We investigated 17 mineral occurrences on four Cycladic islands and from Lavrion on the mainland. Here, barite occurs in almost all deposit types of Miocene to Quaternary age. We used a multiple isotope and geochemical approach to characterize the barite in each deposit, including mineral separate analysis of δ34S and δ18O and laser ablation-inductively coupled plasma-mass spectrometry of 87Sr/86Sr and δ34S. Barite from carbonate-hosted vein and breccia Pb-Zn-Ag mineralization on Lavrion has a wide range of δ34S (2–20‰) and δ18O (10–15‰) values, reflecting a mix of magmatic and surface-derived fluids that have exchanged with isotopically heavy oxygen in the carbonate host rock. Sulfur (δ34S = 10–13‰) and oxygen (δ18O = 9–13‰) values of barite from the carbonate-hosted vein iron and barite mineralization on Serifos are permissive of a magmatic sulfate component. Barite from epithermal base and/or precious metal deposits on Milos has δ34S (17–28‰) and δ18O (9–11‰) values that are similar to modern seawater. In contrast, barite from vein-type deposits on Antiparos and Mykonos has a wide range of δ34S (16–37‰) and δ18O (4–12‰) values, indicating a seawater sulfate source modified by mixing or equilibration of the hydrothermal fluids with the host rocks. Strontium isotope ratios of barite vary regionally, with 87Sr/86Sr ≥ 0.711 in the central Cyclades and 87Sr/86Sr ≤ 0.711 in the west Cyclades, confirming the strong influence of upper crustal rocks on the sources of fluids, Sr, and Ba in the formation of ore.
期刊介绍:
The journal, now published semi-quarterly, was first published in 1905 by the Economic Geology Publishing Company (PUBCO), a not-for-profit company established for the purpose of publishing a periodical devoted to economic geology. On the founding of SEG in 1920, a cooperative arrangement between PUBCO and SEG made the journal the official organ of the Society, and PUBCO agreed to carry the Society''s name on the front cover under the heading "Bulletin of the Society of Economic Geologists". PUBCO and SEG continued to operate as cooperating but separate entities until 2001, when the Board of Directors of PUBCO and the Council of SEG, by unanimous consent, approved a formal agreement of merger. The former activities of the PUBCO Board of Directors are now carried out by a Publications Board, a new self-governing unit within SEG.