分数阶q-积分-差分方程非线性多项脉冲反周期边值问题的研究

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ahmed Alsaedi, Hana Al-Hutami, Bashir Ahmad
{"title":"分数阶q-积分-差分方程非线性多项脉冲反周期边值问题的研究","authors":"Ahmed Alsaedi, Hana Al-Hutami, Bashir Ahmad","doi":"10.1142/s0218348x23401916","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce and investigate a new class of nonlinear multi-term impulsive anti-periodic boundary value problems involving Caputo type fractional [Formula: see text]-derivative operators of different orders and the Riemann–Liouville fractional [Formula: see text]-integral operator. The uniqueness of solutions to the given problem is proved with the aid of Banach’s fixed point theorem. Applying a Shaefer-like fixed point theorem, we also obtain an existence result for the problem at hand. Examples are constructed for illustrating the obtained results. The paper concludes with certain interesting observations concerning the reduction of the results proven in the paper to some new results under an appropriate choice of the parameters involved in the governing equation.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of a nonlinear multi-term impulsive anti-periodic boundary value problem of fractional <i>q</i>-integro-difference equations\",\"authors\":\"Ahmed Alsaedi, Hana Al-Hutami, Bashir Ahmad\",\"doi\":\"10.1142/s0218348x23401916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce and investigate a new class of nonlinear multi-term impulsive anti-periodic boundary value problems involving Caputo type fractional [Formula: see text]-derivative operators of different orders and the Riemann–Liouville fractional [Formula: see text]-integral operator. The uniqueness of solutions to the given problem is proved with the aid of Banach’s fixed point theorem. Applying a Shaefer-like fixed point theorem, we also obtain an existence result for the problem at hand. Examples are constructed for illustrating the obtained results. The paper concludes with certain interesting observations concerning the reduction of the results proven in the paper to some new results under an appropriate choice of the parameters involved in the governing equation.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x23401916\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x23401916","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文引入并研究了一类新的非线性多项脉冲反周期边值问题,涉及Caputo型分数型[公式:见文]-不同阶导数算子和Riemann-Liouville分数型[公式:见文]-积分算子。利用Banach不动点定理证明了给定问题解的唯一性。应用类shaefer不动点定理,得到了该问题的存在性结果。为说明所得结果,构造了实例。本文最后提出了一些有趣的观察结果,即在适当选择控制方程中所涉及的参数的情况下,将文中证明的结果简化为一些新的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of a nonlinear multi-term impulsive anti-periodic boundary value problem of fractional q-integro-difference equations
In this paper, we introduce and investigate a new class of nonlinear multi-term impulsive anti-periodic boundary value problems involving Caputo type fractional [Formula: see text]-derivative operators of different orders and the Riemann–Liouville fractional [Formula: see text]-integral operator. The uniqueness of solutions to the given problem is proved with the aid of Banach’s fixed point theorem. Applying a Shaefer-like fixed point theorem, we also obtain an existence result for the problem at hand. Examples are constructed for illustrating the obtained results. The paper concludes with certain interesting observations concerning the reduction of the results proven in the paper to some new results under an appropriate choice of the parameters involved in the governing equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信