{"title":"分数阶q-积分-差分方程非线性多项脉冲反周期边值问题的研究","authors":"Ahmed Alsaedi, Hana Al-Hutami, Bashir Ahmad","doi":"10.1142/s0218348x23401916","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce and investigate a new class of nonlinear multi-term impulsive anti-periodic boundary value problems involving Caputo type fractional [Formula: see text]-derivative operators of different orders and the Riemann–Liouville fractional [Formula: see text]-integral operator. The uniqueness of solutions to the given problem is proved with the aid of Banach’s fixed point theorem. Applying a Shaefer-like fixed point theorem, we also obtain an existence result for the problem at hand. Examples are constructed for illustrating the obtained results. The paper concludes with certain interesting observations concerning the reduction of the results proven in the paper to some new results under an appropriate choice of the parameters involved in the governing equation.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of a nonlinear multi-term impulsive anti-periodic boundary value problem of fractional <i>q</i>-integro-difference equations\",\"authors\":\"Ahmed Alsaedi, Hana Al-Hutami, Bashir Ahmad\",\"doi\":\"10.1142/s0218348x23401916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce and investigate a new class of nonlinear multi-term impulsive anti-periodic boundary value problems involving Caputo type fractional [Formula: see text]-derivative operators of different orders and the Riemann–Liouville fractional [Formula: see text]-integral operator. The uniqueness of solutions to the given problem is proved with the aid of Banach’s fixed point theorem. Applying a Shaefer-like fixed point theorem, we also obtain an existence result for the problem at hand. Examples are constructed for illustrating the obtained results. The paper concludes with certain interesting observations concerning the reduction of the results proven in the paper to some new results under an appropriate choice of the parameters involved in the governing equation.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x23401916\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x23401916","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Investigation of a nonlinear multi-term impulsive anti-periodic boundary value problem of fractional q-integro-difference equations
In this paper, we introduce and investigate a new class of nonlinear multi-term impulsive anti-periodic boundary value problems involving Caputo type fractional [Formula: see text]-derivative operators of different orders and the Riemann–Liouville fractional [Formula: see text]-integral operator. The uniqueness of solutions to the given problem is proved with the aid of Banach’s fixed point theorem. Applying a Shaefer-like fixed point theorem, we also obtain an existence result for the problem at hand. Examples are constructed for illustrating the obtained results. The paper concludes with certain interesting observations concerning the reduction of the results proven in the paper to some new results under an appropriate choice of the parameters involved in the governing equation.