{"title":"变循环发动机与飞机热管理系统的集成设计","authors":"Robert Clark, Jimmy C.M. Tai, Dimitri N. Mavris","doi":"10.1115/1.4063866","DOIUrl":null,"url":null,"abstract":"Abstract The integrated design of a variable cycle engine (VCE) and an aircraft thermal management system (TMS) is investigated. The integrated system is designed using the multiple design point approach in order to achieve required performance metrics at points other than the cycle design condition. The VCE architecture is a three stream design where the third stream is split off after the fan, exhausting through a separate third-stream nozzle. The primary air stream passes through a low-pressure compressor before splitting into an inner bypass stream and a core stream. The inner streams mix aft of the low-pressure turbine and exhaust through a core nozzle. The variable cycle engine utilizes variable compressor inlet guide vanes, a variable area bypass injector at the core stream mixing plane, and variable throats in the two exhaust nozzles. The TMS architecture is an air cycle system using air bled from the high-pressure compressor. The effect of integrating the TMS into the engine design loop is investigated. A comparison is made to prior studies where the same TMS architecture was connected to a low bypass ratio turbofan engine. The comparison shows that the variable cycle engine is able to improve heat dissipation capability versus a ram air cooled system, while eliminating the airframe integration impact that comes with a separate ram-air stream. Lastly, the impact of modulating the variable geometry features on overall cooling capability is investigated. Results are presented for individual operating points as well as at the aircraft mission level.","PeriodicalId":15685,"journal":{"name":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated Design Of A Variable Cycle Engine And Aircraft Thermal Management System\",\"authors\":\"Robert Clark, Jimmy C.M. Tai, Dimitri N. Mavris\",\"doi\":\"10.1115/1.4063866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The integrated design of a variable cycle engine (VCE) and an aircraft thermal management system (TMS) is investigated. The integrated system is designed using the multiple design point approach in order to achieve required performance metrics at points other than the cycle design condition. The VCE architecture is a three stream design where the third stream is split off after the fan, exhausting through a separate third-stream nozzle. The primary air stream passes through a low-pressure compressor before splitting into an inner bypass stream and a core stream. The inner streams mix aft of the low-pressure turbine and exhaust through a core nozzle. The variable cycle engine utilizes variable compressor inlet guide vanes, a variable area bypass injector at the core stream mixing plane, and variable throats in the two exhaust nozzles. The TMS architecture is an air cycle system using air bled from the high-pressure compressor. The effect of integrating the TMS into the engine design loop is investigated. A comparison is made to prior studies where the same TMS architecture was connected to a low bypass ratio turbofan engine. The comparison shows that the variable cycle engine is able to improve heat dissipation capability versus a ram air cooled system, while eliminating the airframe integration impact that comes with a separate ram-air stream. Lastly, the impact of modulating the variable geometry features on overall cooling capability is investigated. Results are presented for individual operating points as well as at the aircraft mission level.\",\"PeriodicalId\":15685,\"journal\":{\"name\":\"Journal of Engineering for Gas Turbines and Power-transactions of The Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering for Gas Turbines and Power-transactions of The Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063866\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063866","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Integrated Design Of A Variable Cycle Engine And Aircraft Thermal Management System
Abstract The integrated design of a variable cycle engine (VCE) and an aircraft thermal management system (TMS) is investigated. The integrated system is designed using the multiple design point approach in order to achieve required performance metrics at points other than the cycle design condition. The VCE architecture is a three stream design where the third stream is split off after the fan, exhausting through a separate third-stream nozzle. The primary air stream passes through a low-pressure compressor before splitting into an inner bypass stream and a core stream. The inner streams mix aft of the low-pressure turbine and exhaust through a core nozzle. The variable cycle engine utilizes variable compressor inlet guide vanes, a variable area bypass injector at the core stream mixing plane, and variable throats in the two exhaust nozzles. The TMS architecture is an air cycle system using air bled from the high-pressure compressor. The effect of integrating the TMS into the engine design loop is investigated. A comparison is made to prior studies where the same TMS architecture was connected to a low bypass ratio turbofan engine. The comparison shows that the variable cycle engine is able to improve heat dissipation capability versus a ram air cooled system, while eliminating the airframe integration impact that comes with a separate ram-air stream. Lastly, the impact of modulating the variable geometry features on overall cooling capability is investigated. Results are presented for individual operating points as well as at the aircraft mission level.
期刊介绍:
The ASME Journal of Engineering for Gas Turbines and Power publishes archival-quality papers in the areas of gas and steam turbine technology, nuclear engineering, internal combustion engines, and fossil power generation. It covers a broad spectrum of practical topics of interest to industry. Subject areas covered include: thermodynamics; fluid mechanics; heat transfer; and modeling; propulsion and power generation components and systems; combustion, fuels, and emissions; nuclear reactor systems and components; thermal hydraulics; heat exchangers; nuclear fuel technology and waste management; I. C. engines for marine, rail, and power generation; steam and hydro power generation; advanced cycles for fossil energy generation; pollution control and environmental effects.