Siyuan Fu, Hong Yang, Zhong Jiang, Shouli Sun, Fang Duan
{"title":"基于力-位移耦合伺服模型的微结构轮廓精确预测方法","authors":"Siyuan Fu, Hong Yang, Zhong Jiang, Shouli Sun, Fang Duan","doi":"10.1177/09544054231202225","DOIUrl":null,"url":null,"abstract":"Microstructures of specified shapes have been widely applied in electronics, communication, optics, avionics, medical science, and the automotive field. The ultraprecision single-point diamond turning lathe is a core instrument used in microstructure preparation. As a key technical indicator of an ultraprecision lathe, the servo control accuracy of a system directly affects the machining accuracy of the lathe. Because the profile error of microstructures machined by the slow tool servo of the ultraprecision lathe is at the micrometer level, any disturbance reduces the accuracy of parts machining. This paper proposes a tracking error prediction model based on the force–displacement coupled servo model to study the mechanism of action for the cutting force disturbance on a servo control system. The repeated positioning error of an ultraprecision lathe’s linear axis is added to the force–displacement coupled servo model to propose a more practical profile error prediction model and analyze the effect of the cutting force on the part profile. The experimental results indicate that the force–displacement coupled servo tracking error and profile error prediction model proposed in this paper is more accurate than the existing tracking error modeling method without cutting force disturbance. In addition, this paper analyzes how the cutting force in ultraprecision machining affects the servo system and part profile, which provides a reference for subsequent ultraprecision lathe error analysis and improved machining accuracy.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"29 2","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate prediction method for a microstructure profile based on the force–displacement coupled servo model\",\"authors\":\"Siyuan Fu, Hong Yang, Zhong Jiang, Shouli Sun, Fang Duan\",\"doi\":\"10.1177/09544054231202225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microstructures of specified shapes have been widely applied in electronics, communication, optics, avionics, medical science, and the automotive field. The ultraprecision single-point diamond turning lathe is a core instrument used in microstructure preparation. As a key technical indicator of an ultraprecision lathe, the servo control accuracy of a system directly affects the machining accuracy of the lathe. Because the profile error of microstructures machined by the slow tool servo of the ultraprecision lathe is at the micrometer level, any disturbance reduces the accuracy of parts machining. This paper proposes a tracking error prediction model based on the force–displacement coupled servo model to study the mechanism of action for the cutting force disturbance on a servo control system. The repeated positioning error of an ultraprecision lathe’s linear axis is added to the force–displacement coupled servo model to propose a more practical profile error prediction model and analyze the effect of the cutting force on the part profile. The experimental results indicate that the force–displacement coupled servo tracking error and profile error prediction model proposed in this paper is more accurate than the existing tracking error modeling method without cutting force disturbance. In addition, this paper analyzes how the cutting force in ultraprecision machining affects the servo system and part profile, which provides a reference for subsequent ultraprecision lathe error analysis and improved machining accuracy.\",\"PeriodicalId\":20663,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"volume\":\"29 2\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09544054231202225\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544054231202225","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Accurate prediction method for a microstructure profile based on the force–displacement coupled servo model
Microstructures of specified shapes have been widely applied in electronics, communication, optics, avionics, medical science, and the automotive field. The ultraprecision single-point diamond turning lathe is a core instrument used in microstructure preparation. As a key technical indicator of an ultraprecision lathe, the servo control accuracy of a system directly affects the machining accuracy of the lathe. Because the profile error of microstructures machined by the slow tool servo of the ultraprecision lathe is at the micrometer level, any disturbance reduces the accuracy of parts machining. This paper proposes a tracking error prediction model based on the force–displacement coupled servo model to study the mechanism of action for the cutting force disturbance on a servo control system. The repeated positioning error of an ultraprecision lathe’s linear axis is added to the force–displacement coupled servo model to propose a more practical profile error prediction model and analyze the effect of the cutting force on the part profile. The experimental results indicate that the force–displacement coupled servo tracking error and profile error prediction model proposed in this paper is more accurate than the existing tracking error modeling method without cutting force disturbance. In addition, this paper analyzes how the cutting force in ultraprecision machining affects the servo system and part profile, which provides a reference for subsequent ultraprecision lathe error analysis and improved machining accuracy.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.