三维可压缩粘性无阻力MHD系统的全局小解

Jiahong Wu, Xiaoping Zhai
{"title":"三维可压缩粘性无阻力MHD系统的全局小解","authors":"Jiahong Wu, Xiaoping Zhai","doi":"10.1142/s0218202523500574","DOIUrl":null,"url":null,"abstract":"Whether or not smooth solutions to the 3D compressible magnetohydrodynamic (MHD) equations without magnetic diffusion are always global in time remains an extremely challenging open problem. No global well-posedness or stability result is currently available for this 3D MHD system in the whole space [Formula: see text] or the periodic box [Formula: see text] even when the initial data is small or near a steady-state solution. This paper presents a global existence and stability result for smooth solutions to this 3D MHD system near any background magnetic field satisfying a Diophantine condition.","PeriodicalId":18311,"journal":{"name":"Mathematical Models and Methods in Applied Sciences","volume":"45 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Global small solutions to the 3D compressible viscous non-resistive MHD system\",\"authors\":\"Jiahong Wu, Xiaoping Zhai\",\"doi\":\"10.1142/s0218202523500574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Whether or not smooth solutions to the 3D compressible magnetohydrodynamic (MHD) equations without magnetic diffusion are always global in time remains an extremely challenging open problem. No global well-posedness or stability result is currently available for this 3D MHD system in the whole space [Formula: see text] or the periodic box [Formula: see text] even when the initial data is small or near a steady-state solution. This paper presents a global existence and stability result for smooth solutions to this 3D MHD system near any background magnetic field satisfying a Diophantine condition.\",\"PeriodicalId\":18311,\"journal\":{\"name\":\"Mathematical Models and Methods in Applied Sciences\",\"volume\":\"45 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Models and Methods in Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218202523500574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models and Methods in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218202523500574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

无磁扩散的三维可压缩磁流体动力学(MHD)方程的光滑解在时间上是否总是全局的仍然是一个极具挑战性的开放性问题。目前,即使在初始数据很小或接近稳态解的情况下,该3D MHD系统在整个空间[公式:见文]或周期框[公式:见文]中也没有全局适定性或稳定性结果。本文给出了该三维MHD系统在满足丢芬图条件的任何背景磁场附近光滑解的全局存在性和稳定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global small solutions to the 3D compressible viscous non-resistive MHD system
Whether or not smooth solutions to the 3D compressible magnetohydrodynamic (MHD) equations without magnetic diffusion are always global in time remains an extremely challenging open problem. No global well-posedness or stability result is currently available for this 3D MHD system in the whole space [Formula: see text] or the periodic box [Formula: see text] even when the initial data is small or near a steady-state solution. This paper presents a global existence and stability result for smooth solutions to this 3D MHD system near any background magnetic field satisfying a Diophantine condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信