Carina D. Heussler, Isabel L. Dittmann, Bernhard Egger, Sabine Robra, Thomas Klammsteiner
{"title":"可生物降解与不可生物降解微塑料对黑兵蝇幼虫生长发育影响的比较研究","authors":"Carina D. Heussler, Isabel L. Dittmann, Bernhard Egger, Sabine Robra, Thomas Klammsteiner","doi":"10.1007/s12649-023-02296-0","DOIUrl":null,"url":null,"abstract":"Abstract Purpose This study aimed to investigate the digestion process of biodegradable and non-biodegradable microplastics (MPs) within black soldier fly larvae (BSFL) and assess their impact on larval growth and development. The goal was to understand the fate of MPs within BSFL, considering their potential for waste conversion polluted with MPs. Methods BSFL were exposed to two types of MPs, and their growth, development, potential accumulation and excretion of MPs were monitored. Results The findings revealed that the MPs accumulated solely in the larval gut and had no adverse effects on the growth and development of BSFL. Larvae efficiently excreted MPs before reaching the pupation stage. Conclusion This research emphasizes the potential of BSFL as a bioconversion agent for organic waste, even in the presence of MPs. The effective excretion of MPs by BSFL before pupation suggests their ability to mitigate potential harm caused by MP accumulation. The fact that BSFL may excrete MPs before pupation would contribute to their safe use as animal feedstock. A careful evaluation of the effects of using BSFL reared on contaminated substrates especially containing visually non-detectable residuals like nanoplastics, chemicals or toxic metals and further examination of the broader implications for waste management and sustainable livestock farming remains important. Graphical Abstract Experimental design outlining the workflow for the analyses used to investigate the effect of two types of microplastics, polyamide (PA), and polylactic acid (PLA), on growth and development of black soldier fly larvae.","PeriodicalId":23545,"journal":{"name":"Waste and Biomass Valorization","volume":"45 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Study of Effects of Biodegradable and Non-biodegradable Microplastics on the Growth and Development of Black Soldier Fly Larvae (Hermetia illucens)\",\"authors\":\"Carina D. Heussler, Isabel L. Dittmann, Bernhard Egger, Sabine Robra, Thomas Klammsteiner\",\"doi\":\"10.1007/s12649-023-02296-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Purpose This study aimed to investigate the digestion process of biodegradable and non-biodegradable microplastics (MPs) within black soldier fly larvae (BSFL) and assess their impact on larval growth and development. The goal was to understand the fate of MPs within BSFL, considering their potential for waste conversion polluted with MPs. Methods BSFL were exposed to two types of MPs, and their growth, development, potential accumulation and excretion of MPs were monitored. Results The findings revealed that the MPs accumulated solely in the larval gut and had no adverse effects on the growth and development of BSFL. Larvae efficiently excreted MPs before reaching the pupation stage. Conclusion This research emphasizes the potential of BSFL as a bioconversion agent for organic waste, even in the presence of MPs. The effective excretion of MPs by BSFL before pupation suggests their ability to mitigate potential harm caused by MP accumulation. The fact that BSFL may excrete MPs before pupation would contribute to their safe use as animal feedstock. A careful evaluation of the effects of using BSFL reared on contaminated substrates especially containing visually non-detectable residuals like nanoplastics, chemicals or toxic metals and further examination of the broader implications for waste management and sustainable livestock farming remains important. Graphical Abstract Experimental design outlining the workflow for the analyses used to investigate the effect of two types of microplastics, polyamide (PA), and polylactic acid (PLA), on growth and development of black soldier fly larvae.\",\"PeriodicalId\":23545,\"journal\":{\"name\":\"Waste and Biomass Valorization\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste and Biomass Valorization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12649-023-02296-0\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste and Biomass Valorization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12649-023-02296-0","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A Comparative Study of Effects of Biodegradable and Non-biodegradable Microplastics on the Growth and Development of Black Soldier Fly Larvae (Hermetia illucens)
Abstract Purpose This study aimed to investigate the digestion process of biodegradable and non-biodegradable microplastics (MPs) within black soldier fly larvae (BSFL) and assess their impact on larval growth and development. The goal was to understand the fate of MPs within BSFL, considering their potential for waste conversion polluted with MPs. Methods BSFL were exposed to two types of MPs, and their growth, development, potential accumulation and excretion of MPs were monitored. Results The findings revealed that the MPs accumulated solely in the larval gut and had no adverse effects on the growth and development of BSFL. Larvae efficiently excreted MPs before reaching the pupation stage. Conclusion This research emphasizes the potential of BSFL as a bioconversion agent for organic waste, even in the presence of MPs. The effective excretion of MPs by BSFL before pupation suggests their ability to mitigate potential harm caused by MP accumulation. The fact that BSFL may excrete MPs before pupation would contribute to their safe use as animal feedstock. A careful evaluation of the effects of using BSFL reared on contaminated substrates especially containing visually non-detectable residuals like nanoplastics, chemicals or toxic metals and further examination of the broader implications for waste management and sustainable livestock farming remains important. Graphical Abstract Experimental design outlining the workflow for the analyses used to investigate the effect of two types of microplastics, polyamide (PA), and polylactic acid (PLA), on growth and development of black soldier fly larvae.
期刊介绍:
Until the 1990s, technology was the main driver when dealing with waste and residues, the objective being the treatment of waste for (landfill) disposal, storage, and in some cases sorting. In the 1990s, depletion of raw materials and socio-economical concerns supported the direct recycling of waste and residues. However, the direct recycling approach is limited when waste/residues contain significant amounts of pollutants such as heavy metals and organics (VOC, PAH), and when the treatment process to remove/stabilize or destruct the pollutant generates emissions. Due to depletion of natural resources, increasing greenhouse emissions, and awareness of the need for sustainable development in terms of safely reusing waste and biomass, the transformation of waste/biomass to valuable materials and energy (i.e. valorization) is emerging as a strong trend