随机团复合体的多变量中心极限定理

Tadas Temčinas, Vidit Nanda, Gesine Reinert
{"title":"随机团复合体的多变量中心极限定理","authors":"Tadas Temčinas, Vidit Nanda, Gesine Reinert","doi":"10.1007/s41468-023-00146-5","DOIUrl":null,"url":null,"abstract":"Abstract Motivated by open problems in applied and computational algebraic topology, we establish multivariate normal approximation theorems for three random vectors which arise organically in the study of random clique complexes. These are: the vector of critical simplex counts attained by a lexicographical Morse matching, the vector of simplex counts in the link of a fixed simplex, and the vector of total simplex counts. The first of these random vectors forms a cornerstone of modern homology algorithms, while the second one provides a natural generalisation for the notion of vertex degree, and the third one may be viewed from the perspective of U -statistics. To obtain distributional approximations for these random vectors, we extend the notion of dissociated sums to a multivariate setting and prove a new central limit theorem for such sums using Stein’s method.","PeriodicalId":73600,"journal":{"name":"Journal of applied and computational topology","volume":"7 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Multivariate central limit theorems for random clique complexes\",\"authors\":\"Tadas Temčinas, Vidit Nanda, Gesine Reinert\",\"doi\":\"10.1007/s41468-023-00146-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Motivated by open problems in applied and computational algebraic topology, we establish multivariate normal approximation theorems for three random vectors which arise organically in the study of random clique complexes. These are: the vector of critical simplex counts attained by a lexicographical Morse matching, the vector of simplex counts in the link of a fixed simplex, and the vector of total simplex counts. The first of these random vectors forms a cornerstone of modern homology algorithms, while the second one provides a natural generalisation for the notion of vertex degree, and the third one may be viewed from the perspective of U -statistics. To obtain distributional approximations for these random vectors, we extend the notion of dissociated sums to a multivariate setting and prove a new central limit theorem for such sums using Stein’s method.\",\"PeriodicalId\":73600,\"journal\":{\"name\":\"Journal of applied and computational topology\",\"volume\":\"7 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied and computational topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41468-023-00146-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied and computational topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41468-023-00146-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

摘要在应用和计算代数拓扑开放问题的激励下,我们建立了随机团复合体研究中有机出现的三个随机向量的多元正态逼近定理。它们是:通过词典莫尔斯匹配获得的临界单纯形数向量,固定单纯形的链接中的单纯形数向量,以及总单纯形数向量。这些随机向量中的第一个构成了现代同调算法的基石,而第二个提供了顶点度概念的自然推广,第三个可以从U统计的角度来看待。为了得到这些随机向量的分布近似,我们将解离和的概念推广到一个多元集合,并用Stein的方法证明了解离和的一个新的中心极限定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate central limit theorems for random clique complexes
Abstract Motivated by open problems in applied and computational algebraic topology, we establish multivariate normal approximation theorems for three random vectors which arise organically in the study of random clique complexes. These are: the vector of critical simplex counts attained by a lexicographical Morse matching, the vector of simplex counts in the link of a fixed simplex, and the vector of total simplex counts. The first of these random vectors forms a cornerstone of modern homology algorithms, while the second one provides a natural generalisation for the notion of vertex degree, and the third one may be viewed from the perspective of U -statistics. To obtain distributional approximations for these random vectors, we extend the notion of dissociated sums to a multivariate setting and prove a new central limit theorem for such sums using Stein’s method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信