图中团的邻域计数的组合方法

IF 0.3 Q4 MATHEMATICS
Alcyn R. Bakkang, Regimar A. Rasid, Rosalio G. Artes
{"title":"图中团的邻域计数的组合方法","authors":"Alcyn R. Bakkang, Regimar A. Rasid, Rosalio G. Artes","doi":"10.17654/0974165823063","DOIUrl":null,"url":null,"abstract":"Let $G$ be a simple connected graph. Then an $i$-subset of $V(G)$ is a subset of $V(G)$ of cardinality $i$. An $i$-clique is an $i$-subset which induces a complete subgraph of $G$. The clique neighborhood polynomial of $G$ is given by $c n(G ; x, y)=\\sum_{j=0}^{n-i} \\sum_{i=1}^{\\omega(G)} c_{i j}(G) x^i y^j$, where $c_{i j}(G)$ is the number of $i$-cliques in $G$ with neighborhood cardinality equal to $j$ and $\\omega(G)$ is the cardinality of a maximum clique in $G$, called the clique number of $G$. In this paper, we obtain the clique neighborhood polynomials of the special graphs such as the complete graph, complete bipartite graph and complete $q$-partite graph using combinatorial approach. Received: September 14, 2023Accepted: October 9, 2023","PeriodicalId":40868,"journal":{"name":"Advances and Applications in Discrete Mathematics","volume":"9 3","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COMBINATORIAL APPROACH IN COUNTING THE NEIGHBORS OF CLIQUES IN A GRAPH\",\"authors\":\"Alcyn R. Bakkang, Regimar A. Rasid, Rosalio G. Artes\",\"doi\":\"10.17654/0974165823063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a simple connected graph. Then an $i$-subset of $V(G)$ is a subset of $V(G)$ of cardinality $i$. An $i$-clique is an $i$-subset which induces a complete subgraph of $G$. The clique neighborhood polynomial of $G$ is given by $c n(G ; x, y)=\\\\sum_{j=0}^{n-i} \\\\sum_{i=1}^{\\\\omega(G)} c_{i j}(G) x^i y^j$, where $c_{i j}(G)$ is the number of $i$-cliques in $G$ with neighborhood cardinality equal to $j$ and $\\\\omega(G)$ is the cardinality of a maximum clique in $G$, called the clique number of $G$. In this paper, we obtain the clique neighborhood polynomials of the special graphs such as the complete graph, complete bipartite graph and complete $q$-partite graph using combinatorial approach. Received: September 14, 2023Accepted: October 9, 2023\",\"PeriodicalId\":40868,\"journal\":{\"name\":\"Advances and Applications in Discrete Mathematics\",\"volume\":\"9 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances and Applications in Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17654/0974165823063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances and Applications in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/0974165823063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$G$为简单连通图。那么$V(G)$的$i$ -子集就是基数$i$的$V(G)$的子集。一个$i$ -团是一个$i$ -子集,它引出了$G$的一个完整子图。$G$的团簇邻域多项式由$c n(G ; x, y)=\sum_{j=0}^{n-i} \sum_{i=1}^{\omega(G)} c_{i j}(G) x^i y^j$给出,其中$c_{i j}(G)$是$G$中邻域基数等于$j$的$i$ -团簇个数,$\omega(G)$是$G$中最大团簇的基数,称为$G$的团簇数。本文用组合方法得到了完全图、完全二部图和完全$q$ -部图等特殊图的团邻域多项式。收稿日期:2023年9月14日。收稿日期:2023年10月9日
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COMBINATORIAL APPROACH IN COUNTING THE NEIGHBORS OF CLIQUES IN A GRAPH
Let $G$ be a simple connected graph. Then an $i$-subset of $V(G)$ is a subset of $V(G)$ of cardinality $i$. An $i$-clique is an $i$-subset which induces a complete subgraph of $G$. The clique neighborhood polynomial of $G$ is given by $c n(G ; x, y)=\sum_{j=0}^{n-i} \sum_{i=1}^{\omega(G)} c_{i j}(G) x^i y^j$, where $c_{i j}(G)$ is the number of $i$-cliques in $G$ with neighborhood cardinality equal to $j$ and $\omega(G)$ is the cardinality of a maximum clique in $G$, called the clique number of $G$. In this paper, we obtain the clique neighborhood polynomials of the special graphs such as the complete graph, complete bipartite graph and complete $q$-partite graph using combinatorial approach. Received: September 14, 2023Accepted: October 9, 2023
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
42
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信