Jiaqi 家琪 Lin 林, Feng 锋 Wang 王, Linhua 林华 Deng 邓, Hui 辉 Deng 邓, Ying 盈 Mei 梅, Xiaojuan 小娟 Zhang 张
{"title":"太阳活动周期21-25的太阳黑子群与软x射线耀斑的演化关系","authors":"Jiaqi 家琪 Lin 林, Feng 锋 Wang 王, Linhua 林华 Deng 邓, Hui 辉 Deng 邓, Ying 盈 Mei 梅, Xiaojuan 小娟 Zhang 张","doi":"10.3847/1538-4357/ad0469","DOIUrl":null,"url":null,"abstract":"Abstract Studying the interaction between solar flares and sunspot groups (SGs) is crucial for understanding and predicting solar activity. We examined the distribution, correlation, and flaring rates in the northern and southern hemispheres to reveal the relationship between different classes of soft X-ray (SXR) flares and different magnetic classifications of SGs. We discovered a significant north–south asymmetry in SXR flares and SG distribution over Solar Cycles (SC) 21–25. In the rising phase of SC24, the northern hemisphere’s activity is significantly excessive. In the declining phase of SC24, the southern hemisphere’s activity becomes significantly excessive. The total numbers of various SXR flares and SGs vary between the northern and southern hemispheres over the solar cycle. B-class flares are negatively correlated with all SGs at maximum but positively correlated at minimum. C-class flares correlate best with α and β SGs. M-class flares correlate best with β γ δ and β SGs. X-class flares correlate highest with β γ δ SGs. The flaring rate of each flare class is lowest for α SGs and highest for β γ δ SGs. The flaring rates are higher in the southern hemisphere than in the northern hemisphere. Our results demonstrate that solar flares originate from different sources of solar active regions; the high-energy flares tend to be caused by more complex magnetic fields.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":"11 4","pages":"0"},"PeriodicalIF":4.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutionary Relationship between Sunspot Groups and Soft X-Ray Flares over Solar Cycles 21–25\",\"authors\":\"Jiaqi 家琪 Lin 林, Feng 锋 Wang 王, Linhua 林华 Deng 邓, Hui 辉 Deng 邓, Ying 盈 Mei 梅, Xiaojuan 小娟 Zhang 张\",\"doi\":\"10.3847/1538-4357/ad0469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Studying the interaction between solar flares and sunspot groups (SGs) is crucial for understanding and predicting solar activity. We examined the distribution, correlation, and flaring rates in the northern and southern hemispheres to reveal the relationship between different classes of soft X-ray (SXR) flares and different magnetic classifications of SGs. We discovered a significant north–south asymmetry in SXR flares and SG distribution over Solar Cycles (SC) 21–25. In the rising phase of SC24, the northern hemisphere’s activity is significantly excessive. In the declining phase of SC24, the southern hemisphere’s activity becomes significantly excessive. The total numbers of various SXR flares and SGs vary between the northern and southern hemispheres over the solar cycle. B-class flares are negatively correlated with all SGs at maximum but positively correlated at minimum. C-class flares correlate best with α and β SGs. M-class flares correlate best with β γ δ and β SGs. X-class flares correlate highest with β γ δ SGs. The flaring rate of each flare class is lowest for α SGs and highest for β γ δ SGs. The flaring rates are higher in the southern hemisphere than in the northern hemisphere. Our results demonstrate that solar flares originate from different sources of solar active regions; the high-energy flares tend to be caused by more complex magnetic fields.\",\"PeriodicalId\":50735,\"journal\":{\"name\":\"Astrophysical Journal\",\"volume\":\"11 4\",\"pages\":\"0\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/ad0469\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad0469","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Evolutionary Relationship between Sunspot Groups and Soft X-Ray Flares over Solar Cycles 21–25
Abstract Studying the interaction between solar flares and sunspot groups (SGs) is crucial for understanding and predicting solar activity. We examined the distribution, correlation, and flaring rates in the northern and southern hemispheres to reveal the relationship between different classes of soft X-ray (SXR) flares and different magnetic classifications of SGs. We discovered a significant north–south asymmetry in SXR flares and SG distribution over Solar Cycles (SC) 21–25. In the rising phase of SC24, the northern hemisphere’s activity is significantly excessive. In the declining phase of SC24, the southern hemisphere’s activity becomes significantly excessive. The total numbers of various SXR flares and SGs vary between the northern and southern hemispheres over the solar cycle. B-class flares are negatively correlated with all SGs at maximum but positively correlated at minimum. C-class flares correlate best with α and β SGs. M-class flares correlate best with β γ δ and β SGs. X-class flares correlate highest with β γ δ SGs. The flaring rate of each flare class is lowest for α SGs and highest for β γ δ SGs. The flaring rates are higher in the southern hemisphere than in the northern hemisphere. Our results demonstrate that solar flares originate from different sources of solar active regions; the high-energy flares tend to be caused by more complex magnetic fields.
期刊介绍:
The Astrophysical Journal is the foremost research journal in the world devoted to recent developments, discoveries, and theories in astronomy and astrophysics.