相量标识符:基于云的Python笔记本相量胶片数据分析

IF 2.4 Q3 BIOPHYSICS
Mario Bernardi, Francesco Cardarelli
{"title":"相量标识符:基于云的Python笔记本相量胶片数据分析","authors":"Mario Bernardi, Francesco Cardarelli","doi":"10.1016/j.bpr.2023.100135","DOIUrl":null,"url":null,"abstract":"This paper introduces an innovative approach utilizing Google Colaboratory (Colab) for the versatile analysis of phasor Fluorescence Lifetime Imaging Microscopy (FLIM) data collected from various samples (e.g., cuvette, cells, tissues) and in various input file formats. In fact, phasor-FLIM widespread adoption has been hampered by complex instrumentation and data analysis requirements. We mean to make advanced FLIM analysis more accessible to researchers through a cloud-based solution that i) harnesses robust computational resources, ii) eliminates hardware limitations, iii) supports both CPU and GPU processing, We envision a paradigm shift in FLIM data accessibility and potential, aligning with the evolving field of AI-driven FLIM analysis. This approach simplifies FLIM data handling and opens doors for diverse applications, from studying cellular metabolism to investigating drug encapsulation, benefiting researchers across multiple domains. The comparative analysis of freely distributed FLIM tools highlights the unique advantages of this approach in terms of adaptability, scalability, and open-source nature.","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phasor Identifier: A Cloud-based Analysis of Phasor-FLIM Data on Python Notebooks\",\"authors\":\"Mario Bernardi, Francesco Cardarelli\",\"doi\":\"10.1016/j.bpr.2023.100135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces an innovative approach utilizing Google Colaboratory (Colab) for the versatile analysis of phasor Fluorescence Lifetime Imaging Microscopy (FLIM) data collected from various samples (e.g., cuvette, cells, tissues) and in various input file formats. In fact, phasor-FLIM widespread adoption has been hampered by complex instrumentation and data analysis requirements. We mean to make advanced FLIM analysis more accessible to researchers through a cloud-based solution that i) harnesses robust computational resources, ii) eliminates hardware limitations, iii) supports both CPU and GPU processing, We envision a paradigm shift in FLIM data accessibility and potential, aligning with the evolving field of AI-driven FLIM analysis. This approach simplifies FLIM data handling and opens doors for diverse applications, from studying cellular metabolism to investigating drug encapsulation, benefiting researchers across multiple domains. The comparative analysis of freely distributed FLIM tools highlights the unique advantages of this approach in terms of adaptability, scalability, and open-source nature.\",\"PeriodicalId\":72402,\"journal\":{\"name\":\"Biophysical reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpr.2023.100135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2023.100135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用谷歌协作实验室(Colab)的创新方法,用于从各种样品(例如,试管,细胞,组织)和各种输入文件格式收集的相量荧光寿命成像显微镜(FLIM)数据的多功能分析。事实上,相位flim的广泛采用受到复杂仪器和数据分析需求的阻碍。我们的目的是通过基于云的解决方案,使研究人员更容易获得先进的FLIM分析,i)利用强大的计算资源,ii)消除硬件限制,iii)支持CPU和GPU处理。我们设想FLIM数据可访问性和潜力的范式转变,与人工智能驱动的FLIM分析领域保持一致。这种方法简化了FLIM数据处理,并为从研究细胞代谢到研究药物封装的各种应用打开了大门,使多个领域的研究人员受益。通过对自由分发的FLIM工具的比较分析,突出了这种方法在适应性、可伸缩性和开源性质方面的独特优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phasor Identifier: A Cloud-based Analysis of Phasor-FLIM Data on Python Notebooks
This paper introduces an innovative approach utilizing Google Colaboratory (Colab) for the versatile analysis of phasor Fluorescence Lifetime Imaging Microscopy (FLIM) data collected from various samples (e.g., cuvette, cells, tissues) and in various input file formats. In fact, phasor-FLIM widespread adoption has been hampered by complex instrumentation and data analysis requirements. We mean to make advanced FLIM analysis more accessible to researchers through a cloud-based solution that i) harnesses robust computational resources, ii) eliminates hardware limitations, iii) supports both CPU and GPU processing, We envision a paradigm shift in FLIM data accessibility and potential, aligning with the evolving field of AI-driven FLIM analysis. This approach simplifies FLIM data handling and opens doors for diverse applications, from studying cellular metabolism to investigating drug encapsulation, benefiting researchers across multiple domains. The comparative analysis of freely distributed FLIM tools highlights the unique advantages of this approach in terms of adaptability, scalability, and open-source nature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical reports
Biophysical reports Biophysics
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
75 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信