{"title":"如何为你的实验选择合适的AFM探针","authors":"F Ted Limpoco, David E Beck","doi":"10.1093/mictod/qaad055","DOIUrl":null,"url":null,"abstract":"Abstract Atomic force microscopes (AFMs) have emerged as the principal enabling tool for nanotechnology research. They are used ubiquitously in a wide range of fields: from 2D materials, semiconductors, ferroelectrics, and batteries to biomolecules, polymers, and cell biology. As the name implies, AFMs are microscopes. However, rather than using focused light or electrons to magnify sample features, AFMs scan a mechanical probe with a very sharp tip over the surface to create a high-resolution 3D topographical image. Further, by modifying the probe composition or structure, other material properties (electrical, mechanical, magnetic, etc.) can be simultaneously measured and mapped onto the topographic image for precise structure/property correlation. Clearly, the probe is key to unlocking the power of the AFM, thus, choosing the right probe is critical. In this article, we will provide novice and experienced users with basic information and guidelines to simplify the AFM probe selection process.","PeriodicalId":74194,"journal":{"name":"Microscopy today","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to Choose the Right AFM Probe for Your Experiment\",\"authors\":\"F Ted Limpoco, David E Beck\",\"doi\":\"10.1093/mictod/qaad055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Atomic force microscopes (AFMs) have emerged as the principal enabling tool for nanotechnology research. They are used ubiquitously in a wide range of fields: from 2D materials, semiconductors, ferroelectrics, and batteries to biomolecules, polymers, and cell biology. As the name implies, AFMs are microscopes. However, rather than using focused light or electrons to magnify sample features, AFMs scan a mechanical probe with a very sharp tip over the surface to create a high-resolution 3D topographical image. Further, by modifying the probe composition or structure, other material properties (electrical, mechanical, magnetic, etc.) can be simultaneously measured and mapped onto the topographic image for precise structure/property correlation. Clearly, the probe is key to unlocking the power of the AFM, thus, choosing the right probe is critical. In this article, we will provide novice and experienced users with basic information and guidelines to simplify the AFM probe selection process.\",\"PeriodicalId\":74194,\"journal\":{\"name\":\"Microscopy today\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy today\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/mictod/qaad055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy today","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mictod/qaad055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
How to Choose the Right AFM Probe for Your Experiment
Abstract Atomic force microscopes (AFMs) have emerged as the principal enabling tool for nanotechnology research. They are used ubiquitously in a wide range of fields: from 2D materials, semiconductors, ferroelectrics, and batteries to biomolecules, polymers, and cell biology. As the name implies, AFMs are microscopes. However, rather than using focused light or electrons to magnify sample features, AFMs scan a mechanical probe with a very sharp tip over the surface to create a high-resolution 3D topographical image. Further, by modifying the probe composition or structure, other material properties (electrical, mechanical, magnetic, etc.) can be simultaneously measured and mapped onto the topographic image for precise structure/property correlation. Clearly, the probe is key to unlocking the power of the AFM, thus, choosing the right probe is critical. In this article, we will provide novice and experienced users with basic information and guidelines to simplify the AFM probe selection process.