自收缩表面的致密性和刚性

IF 0.5 4区 数学 Q3 MATHEMATICS
Tang-Kai Lee
{"title":"自收缩表面的致密性和刚性","authors":"Tang-Kai Lee","doi":"10.4310/ajm.2023.v27.n3.a1","DOIUrl":null,"url":null,"abstract":"The entropy functional introduced by Colding and Minicozzi plays a fundamental role in the analysis of mean curvature flow. However, unlike the hypersurface case, relatively little about the entropy is known in the higher-codimension case. In this note, we use measure-theoretical techniques and rigidity results for self-shrinkers to prove a compactness theorem for a family of self-shrinking surfaces with low entropy. Based on this, we prove the existence of entropy minimizers among self-shrinking surfaces and improve some rigidity results.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Compactness and rigidity of self-shrinking surfaces\",\"authors\":\"Tang-Kai Lee\",\"doi\":\"10.4310/ajm.2023.v27.n3.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The entropy functional introduced by Colding and Minicozzi plays a fundamental role in the analysis of mean curvature flow. However, unlike the hypersurface case, relatively little about the entropy is known in the higher-codimension case. In this note, we use measure-theoretical techniques and rigidity results for self-shrinkers to prove a compactness theorem for a family of self-shrinking surfaces with low entropy. Based on this, we prove the existence of entropy minimizers among self-shrinking surfaces and improve some rigidity results.\",\"PeriodicalId\":55452,\"journal\":{\"name\":\"Asian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/ajm.2023.v27.n3.a1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/ajm.2023.v27.n3.a1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compactness and rigidity of self-shrinking surfaces
The entropy functional introduced by Colding and Minicozzi plays a fundamental role in the analysis of mean curvature flow. However, unlike the hypersurface case, relatively little about the entropy is known in the higher-codimension case. In this note, we use measure-theoretical techniques and rigidity results for self-shrinkers to prove a compactness theorem for a family of self-shrinking surfaces with low entropy. Based on this, we prove the existence of entropy minimizers among self-shrinking surfaces and improve some rigidity results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信