在R中进行比例的元分析

Naike Wang
{"title":"在R中进行比例的元分析","authors":"Naike Wang","doi":"10.35566/jbds/v3n2/wang","DOIUrl":null,"url":null,"abstract":"Meta-analysis of proportions has been widely adopted across various scientific disciplines as a means to estimate the prevalence of phenomena of interest. However, there is a lack of comprehensive tutorials demonstrating the proper execution of such analyses using the R programming language. The objective of this study is to bridge this gap and provide an extensive guide to conducting a meta-analysis of proportions using R. Furthermore, we offer a thorough critical review of the methods and tests involved in conducting a meta-analysis of proportions, highlighting several common practices that may yield biased estimations and misleading inferences. We illustrate the meta-analytic process in five stages: (1) preparation of the R environment; (2) computation of effect sizes; (3) quantification of heterogeneity; (4) visualization of heterogeneity with the forest plot and the Baujat plot; and (5) explanation of heterogeneity with moderator analyses. In the last section of the tutorial, we address the misconception of assessing publication bias in the context of meta-analysis of proportions. The provided code offers readers three options to transform proportional data (e.g., the double arcsine method). The tutorial presentation is conceptually oriented and formula usage is minimal. We will use a published meta-analysis of proportions as an example to illustrate the implementation of the R code and the interpretation of the results.","PeriodicalId":93575,"journal":{"name":"Journal of behavioral data science","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Conducting Meta-analyses of Proportions in R\",\"authors\":\"Naike Wang\",\"doi\":\"10.35566/jbds/v3n2/wang\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Meta-analysis of proportions has been widely adopted across various scientific disciplines as a means to estimate the prevalence of phenomena of interest. However, there is a lack of comprehensive tutorials demonstrating the proper execution of such analyses using the R programming language. The objective of this study is to bridge this gap and provide an extensive guide to conducting a meta-analysis of proportions using R. Furthermore, we offer a thorough critical review of the methods and tests involved in conducting a meta-analysis of proportions, highlighting several common practices that may yield biased estimations and misleading inferences. We illustrate the meta-analytic process in five stages: (1) preparation of the R environment; (2) computation of effect sizes; (3) quantification of heterogeneity; (4) visualization of heterogeneity with the forest plot and the Baujat plot; and (5) explanation of heterogeneity with moderator analyses. In the last section of the tutorial, we address the misconception of assessing publication bias in the context of meta-analysis of proportions. The provided code offers readers three options to transform proportional data (e.g., the double arcsine method). The tutorial presentation is conceptually oriented and formula usage is minimal. We will use a published meta-analysis of proportions as an example to illustrate the implementation of the R code and the interpretation of the results.\",\"PeriodicalId\":93575,\"journal\":{\"name\":\"Journal of behavioral data science\",\"volume\":\"153 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of behavioral data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35566/jbds/v3n2/wang\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of behavioral data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35566/jbds/v3n2/wang","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

比例的元分析作为一种估计感兴趣的现象的普遍性的手段,已被广泛采用于各个科学学科。然而,缺乏全面的教程来演示如何使用R编程语言正确执行此类分析。本研究的目的是弥合这一差距,并为使用r进行比例荟萃分析提供广泛的指导。此外,我们对进行比例荟萃分析所涉及的方法和测试进行了全面的批判性回顾,强调了几种可能产生偏差估计和误导性推论的常见做法。我们将meta分析过程分为五个阶段:(1)R环境的准备;(2)效应量计算;(3)异质性量化;(4)利用forest样地和Baujat样地可视化异质性;(5)用调节因子分析解释异质性。在本教程的最后一部分,我们解决了在比例荟萃分析的背景下评估发表偏倚的误解。所提供的代码为读者提供了三种转换比例数据的选项(例如,双反正弦方法)。该教程的演示是以概念为导向的,公式的使用很少。我们将使用已发表的比例元分析作为示例来说明R代码的实现和结果的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conducting Meta-analyses of Proportions in R
Meta-analysis of proportions has been widely adopted across various scientific disciplines as a means to estimate the prevalence of phenomena of interest. However, there is a lack of comprehensive tutorials demonstrating the proper execution of such analyses using the R programming language. The objective of this study is to bridge this gap and provide an extensive guide to conducting a meta-analysis of proportions using R. Furthermore, we offer a thorough critical review of the methods and tests involved in conducting a meta-analysis of proportions, highlighting several common practices that may yield biased estimations and misleading inferences. We illustrate the meta-analytic process in five stages: (1) preparation of the R environment; (2) computation of effect sizes; (3) quantification of heterogeneity; (4) visualization of heterogeneity with the forest plot and the Baujat plot; and (5) explanation of heterogeneity with moderator analyses. In the last section of the tutorial, we address the misconception of assessing publication bias in the context of meta-analysis of proportions. The provided code offers readers three options to transform proportional data (e.g., the double arcsine method). The tutorial presentation is conceptually oriented and formula usage is minimal. We will use a published meta-analysis of proportions as an example to illustrate the implementation of the R code and the interpretation of the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信