{"title":"K3曲面上几何量化的谱收敛性","authors":"Kota Hattori","doi":"10.4310/ajm.2023.v27.n3.a2","DOIUrl":null,"url":null,"abstract":"We study the geometric quantization on $K3$ surfaces from the viewpoint of the spectral convergence. We take a special Lagrangian fibrations on the $K3$ surfaces and a family of hyper-Kahler structures tending to large complex structure limit, and show a spectral convergence of the $\\bar{\\partial}$-Laplacians on the prequantum line bundle to the spectral structure related to the set of Bohr-Sommerfeld fibers.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":"47 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spectral convergence in geometric quantization on $K3$ surfaces\",\"authors\":\"Kota Hattori\",\"doi\":\"10.4310/ajm.2023.v27.n3.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the geometric quantization on $K3$ surfaces from the viewpoint of the spectral convergence. We take a special Lagrangian fibrations on the $K3$ surfaces and a family of hyper-Kahler structures tending to large complex structure limit, and show a spectral convergence of the $\\\\bar{\\\\partial}$-Laplacians on the prequantum line bundle to the spectral structure related to the set of Bohr-Sommerfeld fibers.\",\"PeriodicalId\":55452,\"journal\":{\"name\":\"Asian Journal of Mathematics\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/ajm.2023.v27.n3.a2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/ajm.2023.v27.n3.a2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Spectral convergence in geometric quantization on $K3$ surfaces
We study the geometric quantization on $K3$ surfaces from the viewpoint of the spectral convergence. We take a special Lagrangian fibrations on the $K3$ surfaces and a family of hyper-Kahler structures tending to large complex structure limit, and show a spectral convergence of the $\bar{\partial}$-Laplacians on the prequantum line bundle to the spectral structure related to the set of Bohr-Sommerfeld fibers.