{"title":"迁移还是不迁移?分布式流处理中的操作员迁移分析","authors":"Espen Volnes;Thomas Plagemann;Vera Goebel","doi":"10.1109/COMST.2023.3330953","DOIUrl":null,"url":null,"abstract":"One of the most important issues in distributed data stream processing systems is using operator migration to handle highly variable workloads cost-efficiently and adapt to the needs at any given time on demand. Operator migration is a complex process involving changes in the state and stream management of a running query, typically without any data loss, and with as little disruption to the execution as possible. This tutorial aims to introduce operator migration, explain the core elements of operator migration, and provide the reader with a good understanding of the design alternatives used in existing solutions. We developed a conceptual model to explain the fundamentals of operator migration and introduce a unified terminology, leading to a taxonomy of existing solutions. The conceptual model separates mechanisms, i.e., how to migrate, and policy, i.e., when to migrate. This separation is further applied to structure the description of existing solutions, offering the reader an algorithmic perspective on various design alternatives. To enhance our understanding of the impact of various design alternatives on migration mechanisms, we also conducted an empirical study that provides quantitative insights. The operator downtime for the naïve migration approach is almost 20 times longer than when applying an incremental checkpoint-based approach.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"26 1","pages":"670-705"},"PeriodicalIF":34.4000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10310197","citationCount":"0","resultStr":"{\"title\":\"To Migrate or Not to Migrate: An Analysis of Operator Migration in Distributed Stream Processing\",\"authors\":\"Espen Volnes;Thomas Plagemann;Vera Goebel\",\"doi\":\"10.1109/COMST.2023.3330953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most important issues in distributed data stream processing systems is using operator migration to handle highly variable workloads cost-efficiently and adapt to the needs at any given time on demand. Operator migration is a complex process involving changes in the state and stream management of a running query, typically without any data loss, and with as little disruption to the execution as possible. This tutorial aims to introduce operator migration, explain the core elements of operator migration, and provide the reader with a good understanding of the design alternatives used in existing solutions. We developed a conceptual model to explain the fundamentals of operator migration and introduce a unified terminology, leading to a taxonomy of existing solutions. The conceptual model separates mechanisms, i.e., how to migrate, and policy, i.e., when to migrate. This separation is further applied to structure the description of existing solutions, offering the reader an algorithmic perspective on various design alternatives. To enhance our understanding of the impact of various design alternatives on migration mechanisms, we also conducted an empirical study that provides quantitative insights. The operator downtime for the naïve migration approach is almost 20 times longer than when applying an incremental checkpoint-based approach.\",\"PeriodicalId\":55029,\"journal\":{\"name\":\"IEEE Communications Surveys and Tutorials\",\"volume\":\"26 1\",\"pages\":\"670-705\"},\"PeriodicalIF\":34.4000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10310197\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Surveys and Tutorials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10310197/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Surveys and Tutorials","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10310197/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
To Migrate or Not to Migrate: An Analysis of Operator Migration in Distributed Stream Processing
One of the most important issues in distributed data stream processing systems is using operator migration to handle highly variable workloads cost-efficiently and adapt to the needs at any given time on demand. Operator migration is a complex process involving changes in the state and stream management of a running query, typically without any data loss, and with as little disruption to the execution as possible. This tutorial aims to introduce operator migration, explain the core elements of operator migration, and provide the reader with a good understanding of the design alternatives used in existing solutions. We developed a conceptual model to explain the fundamentals of operator migration and introduce a unified terminology, leading to a taxonomy of existing solutions. The conceptual model separates mechanisms, i.e., how to migrate, and policy, i.e., when to migrate. This separation is further applied to structure the description of existing solutions, offering the reader an algorithmic perspective on various design alternatives. To enhance our understanding of the impact of various design alternatives on migration mechanisms, we also conducted an empirical study that provides quantitative insights. The operator downtime for the naïve migration approach is almost 20 times longer than when applying an incremental checkpoint-based approach.
期刊介绍:
IEEE Communications Surveys & Tutorials is an online journal published by the IEEE Communications Society for tutorials and surveys covering all aspects of the communications field. Telecommunications technology is progressing at a rapid pace, and the IEEE Communications Society is committed to providing researchers and other professionals the information and tools to stay abreast. IEEE Communications Surveys and Tutorials focuses on integrating and adding understanding to the existing literature on communications, putting results in context. Whether searching for in-depth information about a familiar area or an introduction into a new area, IEEE Communications Surveys & Tutorials aims to be the premier source of peer-reviewed, comprehensive tutorials and surveys, and pointers to further sources. IEEE Communications Surveys & Tutorials publishes only articles exclusively written for IEEE Communications Surveys & Tutorials and go through a rigorous review process before their publication in the quarterly issues.
A tutorial article in the IEEE Communications Surveys & Tutorials should be designed to help the reader to become familiar with and learn something specific about a chosen topic. In contrast, the term survey, as applied here, is defined to mean a survey of the literature. A survey article in IEEE Communications Surveys & Tutorials should provide a comprehensive review of developments in a selected area, covering its development from its inception to its current state and beyond, and illustrating its development through liberal citations from the literature. Both tutorials and surveys should be tutorial in nature and should be written in a style comprehensible to readers outside the specialty of the article.