无高斯边界的均匀复时间热核估计

IF 3.2 1区 数学 Q1 MATHEMATICS
Shiliang Zhao, Quan Zheng
{"title":"无高斯边界的均匀复时间热核估计","authors":"Shiliang Zhao, Quan Zheng","doi":"10.1515/anona-2023-0114","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this article is twofold. First, we study the uniform complex time heat kernel estimates of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mi>z</m:mi> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mfrac> <m:mrow> <m:mi>α</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> </m:mrow> </m:msup> </m:mrow> </m:msup> </m:math> {e}^{-z{\\left(-\\Delta )}^{\\frac{\\alpha }{2}}} for <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>α</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>z</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">C</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> </m:msup> </m:math> \\alpha \\gt 0,z\\in {{\\mathbb{C}}}^{+} . To this end, we establish the asymptotic estimates for <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>P</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> <m:mo>,</m:mo> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> P\\left(z,x) with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>z</m:mi> </m:math> z satisfying <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>ω</m:mi> <m:mo>≤</m:mo> <m:mo>∣</m:mo> <m:mi>θ</m:mi> <m:mo>∣</m:mo> <m:mo><</m:mo> <m:mfrac> <m:mrow> <m:mi>π</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> </m:math> 0\\lt \\omega \\le | \\theta | \\lt \\frac{\\pi }{2} followed by the uniform complex time heat kernel estimates. Second, we studied the uniform complex time estimates of the analytic semigroup generated by <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>H</m:mi> <m:mo>=</m:mo> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mstyle displaystyle=\"false\"> <m:mfrac> <m:mrow> <m:mi>α</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> </m:mstyle> </m:mrow> </m:msup> <m:mo>+</m:mo> <m:mi>V</m:mi> </m:math> H={\\left(-\\Delta )}^{\\tfrac{\\alpha }{2}}+V , where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>V</m:mi> </m:math> V belongs to higher-order Kato class.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"10 1","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Uniform complex time heat Kernel estimates without Gaussian bounds\",\"authors\":\"Shiliang Zhao, Quan Zheng\",\"doi\":\"10.1515/anona-2023-0114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of this article is twofold. First, we study the uniform complex time heat kernel estimates of <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mi>z</m:mi> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mfrac> <m:mrow> <m:mi>α</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> </m:mrow> </m:msup> </m:mrow> </m:msup> </m:math> {e}^{-z{\\\\left(-\\\\Delta )}^{\\\\frac{\\\\alpha }{2}}} for <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>α</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>z</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">C</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> </m:msup> </m:math> \\\\alpha \\\\gt 0,z\\\\in {{\\\\mathbb{C}}}^{+} . To this end, we establish the asymptotic estimates for <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>P</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> <m:mo>,</m:mo> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> P\\\\left(z,x) with <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>z</m:mi> </m:math> z satisfying <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>ω</m:mi> <m:mo>≤</m:mo> <m:mo>∣</m:mo> <m:mi>θ</m:mi> <m:mo>∣</m:mo> <m:mo><</m:mo> <m:mfrac> <m:mrow> <m:mi>π</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> </m:math> 0\\\\lt \\\\omega \\\\le | \\\\theta | \\\\lt \\\\frac{\\\\pi }{2} followed by the uniform complex time heat kernel estimates. Second, we studied the uniform complex time estimates of the analytic semigroup generated by <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>H</m:mi> <m:mo>=</m:mo> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mstyle displaystyle=\\\"false\\\"> <m:mfrac> <m:mrow> <m:mi>α</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> </m:mstyle> </m:mrow> </m:msup> <m:mo>+</m:mo> <m:mi>V</m:mi> </m:math> H={\\\\left(-\\\\Delta )}^{\\\\tfrac{\\\\alpha }{2}}+V , where <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>V</m:mi> </m:math> V belongs to higher-order Kato class.\",\"PeriodicalId\":51301,\"journal\":{\"name\":\"Advances in Nonlinear Analysis\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2023-0114\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anona-2023-0114","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是双重的。首先,我们研究了e−z(−Δ) α 2 {e}^{-z {\left (-\Delta)}^{\frac{\alpha }{2}}}对于α &gt的均匀复时间热核估计;0,z∈C + \alpha\gt 0,z \in{{\mathbb{C}}} ^{+}。为此,我们建立了P (z,x) P \left (z,x)的渐近估计,且z z满足0 &lt;ω≤∣θ∣&lt;π 20 \lt\omega\le | \theta | \lt\frac{\pi }{2}其次是均匀复时间热核估计。其次,我们研究了H=(−Δ) α 2 +V H= {\left (- \Delta)}^{\tfrac{\alpha }{2}} +V生成的解析半群的一致复时间估计,其中V V属于高阶Kato类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform complex time heat Kernel estimates without Gaussian bounds
Abstract The aim of this article is twofold. First, we study the uniform complex time heat kernel estimates of e z ( Δ ) α 2 {e}^{-z{\left(-\Delta )}^{\frac{\alpha }{2}}} for α > 0 , z C + \alpha \gt 0,z\in {{\mathbb{C}}}^{+} . To this end, we establish the asymptotic estimates for P ( z , x ) P\left(z,x) with z z satisfying 0 < ω θ < π 2 0\lt \omega \le | \theta | \lt \frac{\pi }{2} followed by the uniform complex time heat kernel estimates. Second, we studied the uniform complex time estimates of the analytic semigroup generated by H = ( Δ ) α 2 + V H={\left(-\Delta )}^{\tfrac{\alpha }{2}}+V , where V V belongs to higher-order Kato class.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
6.00
自引率
9.50%
发文量
60
审稿时长
30 weeks
期刊介绍: Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信