Tao Zhang, Mengjuan Wu, Chunjie Gao, Yingdan Wang, Lei Wang
{"title":"快速-缓慢进展和复发的随机结核模型中疾病消失和爆发的概率","authors":"Tao Zhang, Mengjuan Wu, Chunjie Gao, Yingdan Wang, Lei Wang","doi":"10.3934/era.2023360","DOIUrl":null,"url":null,"abstract":"A stochastic continuous-time Markov chain tuberculosis model with fast-slow progression and relapse is established to explore the impact of the demographic variation on TB transmission. At first, the extinction threshold and probability of the disease extinction and outbreak are obtained by applying the multitype Galton-Waston branching process for the stochastic model. In numerical simulations, the probability of the disease extinction and outbreak and expected epidemic duration of the disease are estimated. To see how demographic stochasticity affects TB dynamics, we compare dynamical behaviors of both stochastic and deterministic models, and these results show that the disease extinction in stochastic model would occur while the disease is persistent for the deterministic model. Our results suggest that minimizing the contact between the infectious and the susceptible, and detecting the latently infected as early as possible, etc., could effectively prevent the spread of tuberculosis.","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":"22 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probability of disease extinction and outbreak in a stochastic tuberculosis model with fast-slow progression and relapse\",\"authors\":\"Tao Zhang, Mengjuan Wu, Chunjie Gao, Yingdan Wang, Lei Wang\",\"doi\":\"10.3934/era.2023360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A stochastic continuous-time Markov chain tuberculosis model with fast-slow progression and relapse is established to explore the impact of the demographic variation on TB transmission. At first, the extinction threshold and probability of the disease extinction and outbreak are obtained by applying the multitype Galton-Waston branching process for the stochastic model. In numerical simulations, the probability of the disease extinction and outbreak and expected epidemic duration of the disease are estimated. To see how demographic stochasticity affects TB dynamics, we compare dynamical behaviors of both stochastic and deterministic models, and these results show that the disease extinction in stochastic model would occur while the disease is persistent for the deterministic model. Our results suggest that minimizing the contact between the infectious and the susceptible, and detecting the latently infected as early as possible, etc., could effectively prevent the spread of tuberculosis.\",\"PeriodicalId\":48554,\"journal\":{\"name\":\"Electronic Research Archive\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Archive\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/era.2023360\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Archive","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/era.2023360","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Probability of disease extinction and outbreak in a stochastic tuberculosis model with fast-slow progression and relapse
A stochastic continuous-time Markov chain tuberculosis model with fast-slow progression and relapse is established to explore the impact of the demographic variation on TB transmission. At first, the extinction threshold and probability of the disease extinction and outbreak are obtained by applying the multitype Galton-Waston branching process for the stochastic model. In numerical simulations, the probability of the disease extinction and outbreak and expected epidemic duration of the disease are estimated. To see how demographic stochasticity affects TB dynamics, we compare dynamical behaviors of both stochastic and deterministic models, and these results show that the disease extinction in stochastic model would occur while the disease is persistent for the deterministic model. Our results suggest that minimizing the contact between the infectious and the susceptible, and detecting the latently infected as early as possible, etc., could effectively prevent the spread of tuberculosis.