奇异非混沌吸引子上有限时间Lyapunov正指数的概率

IF 1.1 3区 数学 Q1 MATHEMATICS
Flavia Remo, Gabriel Fuhrmann, Tobias Jäger
{"title":"奇异非混沌吸引子上有限时间Lyapunov正指数的概率","authors":"Flavia Remo, Gabriel Fuhrmann, Tobias Jäger","doi":"10.3934/dcds.2023132","DOIUrl":null,"url":null,"abstract":"We study strange non-chaotic attractors in a class of quasiperiodically forced monotone interval maps known as pinched skew products. We prove that the probability of positive time-$ N $ Lyapunov exponents—with respect to the unique physical measure on the attractor—decays exponentially as $ N\\to \\infty $. The motivation for this work comes from the study of finite-time Lyapunov exponents as possible early-warning signals of critical transitions in the context of forced dynamics.","PeriodicalId":51007,"journal":{"name":"Discrete and Continuous Dynamical Systems","volume":"233 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the probability of positive finite-time Lyapunov exponents on strange nonchaotic attractors\",\"authors\":\"Flavia Remo, Gabriel Fuhrmann, Tobias Jäger\",\"doi\":\"10.3934/dcds.2023132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study strange non-chaotic attractors in a class of quasiperiodically forced monotone interval maps known as pinched skew products. We prove that the probability of positive time-$ N $ Lyapunov exponents—with respect to the unique physical measure on the attractor—decays exponentially as $ N\\\\to \\\\infty $. The motivation for this work comes from the study of finite-time Lyapunov exponents as possible early-warning signals of critical transitions in the context of forced dynamics.\",\"PeriodicalId\":51007,\"journal\":{\"name\":\"Discrete and Continuous Dynamical Systems\",\"volume\":\"233 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Continuous Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2023132\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2023132","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了一类被称为紧缩斜积的拟周期强迫单调区间映射中的奇异非混沌吸引子。我们证明了相对于吸引子上的唯一物理测度的正时间- $ N $ Lyapunov指数的概率呈指数衰减为$ N\to \infty $。这项工作的动机来自有限时间李雅普诺夫指数的研究,作为强迫动力学背景下关键转变的可能预警信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the probability of positive finite-time Lyapunov exponents on strange nonchaotic attractors
We study strange non-chaotic attractors in a class of quasiperiodically forced monotone interval maps known as pinched skew products. We prove that the probability of positive time-$ N $ Lyapunov exponents—with respect to the unique physical measure on the attractor—decays exponentially as $ N\to \infty $. The motivation for this work comes from the study of finite-time Lyapunov exponents as possible early-warning signals of critical transitions in the context of forced dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
175
审稿时长
6 months
期刊介绍: DCDS, series A includes peer-reviewed original papers and invited expository papers on the theory and methods of analysis, differential equations and dynamical systems. This journal is committed to recording important new results in its field and maintains the highest standards of innovation and quality. To be published in this journal, an original paper must be correct, new, nontrivial and of interest to a substantial number of readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信