Wei Guo, Yu-Ke Ma, Yan-Feng Wang, Vincent Laude, Yue-Sheng Wang
{"title":"操纵引导兰姆波的双可调谐声子波导","authors":"Wei Guo, Yu-Ke Ma, Yan-Feng Wang, Vincent Laude, Yue-Sheng Wang","doi":"10.1017/pma.2023.10","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we design and fabricate dual-tunable waveguides in a two-dimensional periodic plate with threaded holes. Dual tunability is realized by using rods held with nuts as well as assembly prestress of the nuts. A straight waveguide, a bent waveguide, and a wave splitter are designed by changing the distribution of rods and nuts in different circuits. The experimental and numerical results show that the frequencies of guided waves can be tuned by the assembly prestress. By increasing the amount of prestress, the frequency range of the passing band can be shifted upward. Confinements, guiding, and splitting of Lamb waves are clearly observed in both experimental measurements and numerical simulations. This work is essential for the practical design of reconfigurable phononic devices.","PeriodicalId":168016,"journal":{"name":"Programmable Materials","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-tunable phononic waveguides for manipulation of guided Lamb waves\",\"authors\":\"Wei Guo, Yu-Ke Ma, Yan-Feng Wang, Vincent Laude, Yue-Sheng Wang\",\"doi\":\"10.1017/pma.2023.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we design and fabricate dual-tunable waveguides in a two-dimensional periodic plate with threaded holes. Dual tunability is realized by using rods held with nuts as well as assembly prestress of the nuts. A straight waveguide, a bent waveguide, and a wave splitter are designed by changing the distribution of rods and nuts in different circuits. The experimental and numerical results show that the frequencies of guided waves can be tuned by the assembly prestress. By increasing the amount of prestress, the frequency range of the passing band can be shifted upward. Confinements, guiding, and splitting of Lamb waves are clearly observed in both experimental measurements and numerical simulations. This work is essential for the practical design of reconfigurable phononic devices.\",\"PeriodicalId\":168016,\"journal\":{\"name\":\"Programmable Materials\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Programmable Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/pma.2023.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programmable Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/pma.2023.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dual-tunable phononic waveguides for manipulation of guided Lamb waves
Abstract In this paper, we design and fabricate dual-tunable waveguides in a two-dimensional periodic plate with threaded holes. Dual tunability is realized by using rods held with nuts as well as assembly prestress of the nuts. A straight waveguide, a bent waveguide, and a wave splitter are designed by changing the distribution of rods and nuts in different circuits. The experimental and numerical results show that the frequencies of guided waves can be tuned by the assembly prestress. By increasing the amount of prestress, the frequency range of the passing band can be shifted upward. Confinements, guiding, and splitting of Lamb waves are clearly observed in both experimental measurements and numerical simulations. This work is essential for the practical design of reconfigurable phononic devices.