{"title":"适用于微粒流和Stokes方程的最佳收敛且易于实现的浸入边界方法","authors":"Michel Duprez, Vanessa Lleras, Alexei Lozinski","doi":"10.1051/m2an/2023010","DOIUrl":null,"url":null,"abstract":"We present an immersed boundary method to simulate the creeping motion of a rigid particle in a fluid described by the Stokes equations discretized thanks to a finite element strategy on unfitted meshes, called ϕ -FEM, that uses the description of the solid with a level-set function. One of the advantages of our method is the use of standard finite element spaces and classical integration tools, while maintaining the optimal convergence (theoretically in the H 1 norm for the velocity and L 2 for pressure; numerically also in the L 2 norm for the velocity).","PeriodicalId":51249,"journal":{"name":"Esaim-Probability and Statistics","volume":"52 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"<i>ϕ</i>-FEM: an optimally convergent and easily implementable immersed boundary method for particulate flows and Stokes equations\",\"authors\":\"Michel Duprez, Vanessa Lleras, Alexei Lozinski\",\"doi\":\"10.1051/m2an/2023010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an immersed boundary method to simulate the creeping motion of a rigid particle in a fluid described by the Stokes equations discretized thanks to a finite element strategy on unfitted meshes, called ϕ -FEM, that uses the description of the solid with a level-set function. One of the advantages of our method is the use of standard finite element spaces and classical integration tools, while maintaining the optimal convergence (theoretically in the H 1 norm for the velocity and L 2 for pressure; numerically also in the L 2 norm for the velocity).\",\"PeriodicalId\":51249,\"journal\":{\"name\":\"Esaim-Probability and Statistics\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Probability and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/m2an/2023010\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/m2an/2023010","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
ϕ-FEM: an optimally convergent and easily implementable immersed boundary method for particulate flows and Stokes equations
We present an immersed boundary method to simulate the creeping motion of a rigid particle in a fluid described by the Stokes equations discretized thanks to a finite element strategy on unfitted meshes, called ϕ -FEM, that uses the description of the solid with a level-set function. One of the advantages of our method is the use of standard finite element spaces and classical integration tools, while maintaining the optimal convergence (theoretically in the H 1 norm for the velocity and L 2 for pressure; numerically also in the L 2 norm for the velocity).
期刊介绍:
The journal publishes original research and survey papers in the area of Probability and Statistics. It covers theoretical and practical aspects, in any field of these domains.
Of particular interest are methodological developments with application in other scientific areas, for example Biology and Genetics, Information Theory, Finance, Bioinformatics, Random structures and Random graphs, Econometrics, Physics.
Long papers are very welcome.
Indeed, we intend to develop the journal in the direction of applications and to open it to various fields where random mathematical modelling is important. In particular we will call (survey) papers in these areas, in order to make the random community aware of important problems of both theoretical and practical interest. We all know that many recent fascinating developments in Probability and Statistics are coming from "the outside" and we think that ESAIM: P&S should be a good entry point for such exchanges. Of course this does not mean that the journal will be only devoted to practical aspects.