适用于微粒流和Stokes方程的最佳收敛且易于实现的浸入边界方法

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY
Michel Duprez, Vanessa Lleras, Alexei Lozinski
{"title":"适用于微粒流和Stokes方程的最佳收敛且易于实现的浸入边界方法","authors":"Michel Duprez, Vanessa Lleras, Alexei Lozinski","doi":"10.1051/m2an/2023010","DOIUrl":null,"url":null,"abstract":"We present an immersed boundary method to simulate the creeping motion of a rigid particle in a fluid described by the Stokes equations discretized thanks to a finite element strategy on unfitted meshes, called ϕ -FEM, that uses the description of the solid with a level-set function. One of the advantages of our method is the use of standard finite element spaces and classical integration tools, while maintaining the optimal convergence (theoretically in the H 1 norm for the velocity and L 2 for pressure; numerically also in the L 2 norm for the velocity).","PeriodicalId":51249,"journal":{"name":"Esaim-Probability and Statistics","volume":"52 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"<i>ϕ</i>-FEM: an optimally convergent and easily implementable immersed boundary method for particulate flows and Stokes equations\",\"authors\":\"Michel Duprez, Vanessa Lleras, Alexei Lozinski\",\"doi\":\"10.1051/m2an/2023010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an immersed boundary method to simulate the creeping motion of a rigid particle in a fluid described by the Stokes equations discretized thanks to a finite element strategy on unfitted meshes, called ϕ -FEM, that uses the description of the solid with a level-set function. One of the advantages of our method is the use of standard finite element spaces and classical integration tools, while maintaining the optimal convergence (theoretically in the H 1 norm for the velocity and L 2 for pressure; numerically also in the L 2 norm for the velocity).\",\"PeriodicalId\":51249,\"journal\":{\"name\":\"Esaim-Probability and Statistics\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Probability and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/m2an/2023010\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/m2an/2023010","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种浸入式边界方法来模拟由Stokes方程离散化的流体中刚性粒子的蠕动运动,这要归功于未拟合网格上的有限元策略,称为φ -FEM,该策略使用具有水平集函数的固体描述。我们的方法的优点之一是使用了标准的有限元空间和经典的积分工具,同时保持了最优的收敛性(理论上在速度的h1范数和压力的l2范数;数值上也在速度的l2范数中)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ϕ-FEM: an optimally convergent and easily implementable immersed boundary method for particulate flows and Stokes equations
We present an immersed boundary method to simulate the creeping motion of a rigid particle in a fluid described by the Stokes equations discretized thanks to a finite element strategy on unfitted meshes, called ϕ -FEM, that uses the description of the solid with a level-set function. One of the advantages of our method is the use of standard finite element spaces and classical integration tools, while maintaining the optimal convergence (theoretically in the H 1 norm for the velocity and L 2 for pressure; numerically also in the L 2 norm for the velocity).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Esaim-Probability and Statistics
Esaim-Probability and Statistics STATISTICS & PROBABILITY-
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: The journal publishes original research and survey papers in the area of Probability and Statistics. It covers theoretical and practical aspects, in any field of these domains. Of particular interest are methodological developments with application in other scientific areas, for example Biology and Genetics, Information Theory, Finance, Bioinformatics, Random structures and Random graphs, Econometrics, Physics. Long papers are very welcome. Indeed, we intend to develop the journal in the direction of applications and to open it to various fields where random mathematical modelling is important. In particular we will call (survey) papers in these areas, in order to make the random community aware of important problems of both theoretical and practical interest. We all know that many recent fascinating developments in Probability and Statistics are coming from "the outside" and we think that ESAIM: P&S should be a good entry point for such exchanges. Of course this does not mean that the journal will be only devoted to practical aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信