{"title":"具有充足正常束的叶理的动力学方面","authors":"Adachi Masanori, Masanori Adachi","doi":"10.1512/iumj.2023.72.9488","DOIUrl":null,"url":null,"abstract":"We prove the following result that was conjectured by Brunella: Let $X$ be a compact complex manifold of dimension $\\geq 3$. Let $\\mathcal{F}$ be a codimension one holomorphic foliation on $X$ with ample normal bundle. Then every leaf of $\\mathcal{F}$ accumulates to the singular set of $\\mathcal{F}$.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":"266 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dynamical aspects of foliations with ample normal bundle\",\"authors\":\"Adachi Masanori, Masanori Adachi\",\"doi\":\"10.1512/iumj.2023.72.9488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the following result that was conjectured by Brunella: Let $X$ be a compact complex manifold of dimension $\\\\geq 3$. Let $\\\\mathcal{F}$ be a codimension one holomorphic foliation on $X$ with ample normal bundle. Then every leaf of $\\\\mathcal{F}$ accumulates to the singular set of $\\\\mathcal{F}$.\",\"PeriodicalId\":50369,\"journal\":{\"name\":\"Indiana University Mathematics Journal\",\"volume\":\"266 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indiana University Mathematics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2023.72.9488\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1512/iumj.2023.72.9488","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Dynamical aspects of foliations with ample normal bundle
We prove the following result that was conjectured by Brunella: Let $X$ be a compact complex manifold of dimension $\geq 3$. Let $\mathcal{F}$ be a codimension one holomorphic foliation on $X$ with ample normal bundle. Then every leaf of $\mathcal{F}$ accumulates to the singular set of $\mathcal{F}$.