{"title":"黎曼曲面上超曲面上全纯映射的曲率估计和分支","authors":"Si DUC QUANG","doi":"10.24033/bsmf.2864","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":55332,"journal":{"name":"Bulletin De La Societe Mathematique De France","volume":"65 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Curvature estimate and the ramification of the holomorphic maps over hypersurfaces on Riemann surfaces\",\"authors\":\"Si DUC QUANG\",\"doi\":\"10.24033/bsmf.2864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":55332,\"journal\":{\"name\":\"Bulletin De La Societe Mathematique De France\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin De La Societe Mathematique De France\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24033/bsmf.2864\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin De La Societe Mathematique De France","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24033/bsmf.2864","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
期刊介绍:
The Bulletin de la Société Mathématique de France was founded in 1873, and it has published works by some of the most prestigious mathematicians, including for example H. Poincaré, E. Borel, E. Cartan, A. Grothendieck and J. Leray. It continues to be a journal of the highest mathematical quality, using a rigorous refereeing process, as well as a discerning selection procedure. Its editorial board members have diverse specializations in mathematics, ensuring that articles in all areas of mathematics are considered. Promising work by young authors is encouraged.