二维有界控制线性离散系统作用速度问题的超椭球逼近

D.N. Ibragimov, V.M. Podgornaya
{"title":"二维有界控制线性离散系统作用速度问题的超椭球逼近","authors":"D.N. Ibragimov, V.M. Podgornaya","doi":"10.17759/mda.2023130209","DOIUrl":null,"url":null,"abstract":"<p>The paper considers a two-dimensional linear discrete system with bounded control. For the system, the problem of speed is solved, that is, the construction of a control process that transfers the system from the initial state to the origin in the minimum number of steps. If the set of acceptable control values has a superellipse structure, then the problem of calculating optimal control can be reduced to solving a system of algebraic equations. A superellipsoidal approximation method has been developed for sets of arbitrary structure. Examples are considered in the paper.</p>","PeriodicalId":498071,"journal":{"name":"Modelirovanie i analiz dannyh","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superellipsoidal Approximations in the Speed-in-action Problem for a Two-dimensional Linear Discrete System with Bounded Control\",\"authors\":\"D.N. Ibragimov, V.M. Podgornaya\",\"doi\":\"10.17759/mda.2023130209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper considers a two-dimensional linear discrete system with bounded control. For the system, the problem of speed is solved, that is, the construction of a control process that transfers the system from the initial state to the origin in the minimum number of steps. If the set of acceptable control values has a superellipse structure, then the problem of calculating optimal control can be reduced to solving a system of algebraic equations. A superellipsoidal approximation method has been developed for sets of arbitrary structure. Examples are considered in the paper.</p>\",\"PeriodicalId\":498071,\"journal\":{\"name\":\"Modelirovanie i analiz dannyh\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelirovanie i analiz dannyh\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17759/mda.2023130209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelirovanie i analiz dannyh","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17759/mda.2023130209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究一类具有有界控制的二维线性离散系统。对于系统,解决了速度问题,即构造一个控制过程,使系统以最小的步数从初始状态转移到原点。如果可接受控制值集具有超椭圆结构,则计算最优控制问题可简化为求解一个代数方程组。提出了一种适用于任意结构集的超椭球逼近方法。本文考虑了实例。</p>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superellipsoidal Approximations in the Speed-in-action Problem for a Two-dimensional Linear Discrete System with Bounded Control

The paper considers a two-dimensional linear discrete system with bounded control. For the system, the problem of speed is solved, that is, the construction of a control process that transfers the system from the initial state to the origin in the minimum number of steps. If the set of acceptable control values has a superellipse structure, then the problem of calculating optimal control can be reduced to solving a system of algebraic equations. A superellipsoidal approximation method has been developed for sets of arbitrary structure. Examples are considered in the paper.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信