Bidhan Khirali, S. Laha, Biswanath Swain, Ujjwal Laha
{"title":"位移邓范势运动中的核子-核子弹性散射","authors":"Bidhan Khirali, S. Laha, Biswanath Swain, Ujjwal Laha","doi":"10.26565/2312-4334-2023-3-66","DOIUrl":null,"url":null,"abstract":"The scattering theory's main objective is to comprehend an object by hurling something at it. One can learn details about an object by observing how it bounces off other objects. The potential that exists between the two particles is the thing that one seeks to comprehend. In time-independent approach to scattering, one assumes that the incident beam has been activated for a very long time and that the entire system is in a stationary state. For short-range local potentials, the variable phase methodology is highly useful in solving quantum mechanical scattering problems. Variable phase methodology/phase-function technique has been explicitly utilized for non-relativistic nucleon-nucleon scattering phenomenon with the fundamental central local potential term and without spin-orbit force. Working under this methodology, scattering phase shifts, total scattering cross section and Differential cross section have been investigated for a new nuclear potential model “Shifted Deng-Fan potential”. Real nucleon-nucleon scattering systems (n-p) and (p-p) have been treated for this purpose with partial waves up to l = 2 in the low and moderate energy region. For l > 0 waves, interacting repulsive barrier potential has been incorporated with the existing central part. Our results for the considered potential model show a close contest with that of the experimental data.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"19 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nucleon-Nucleon Elastic Scattering for Motion in The Shifted Deng-Fan Potential\",\"authors\":\"Bidhan Khirali, S. Laha, Biswanath Swain, Ujjwal Laha\",\"doi\":\"10.26565/2312-4334-2023-3-66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scattering theory's main objective is to comprehend an object by hurling something at it. One can learn details about an object by observing how it bounces off other objects. The potential that exists between the two particles is the thing that one seeks to comprehend. In time-independent approach to scattering, one assumes that the incident beam has been activated for a very long time and that the entire system is in a stationary state. For short-range local potentials, the variable phase methodology is highly useful in solving quantum mechanical scattering problems. Variable phase methodology/phase-function technique has been explicitly utilized for non-relativistic nucleon-nucleon scattering phenomenon with the fundamental central local potential term and without spin-orbit force. Working under this methodology, scattering phase shifts, total scattering cross section and Differential cross section have been investigated for a new nuclear potential model “Shifted Deng-Fan potential”. Real nucleon-nucleon scattering systems (n-p) and (p-p) have been treated for this purpose with partial waves up to l = 2 in the low and moderate energy region. For l > 0 waves, interacting repulsive barrier potential has been incorporated with the existing central part. Our results for the considered potential model show a close contest with that of the experimental data.\",\"PeriodicalId\":42569,\"journal\":{\"name\":\"East European Journal of Physics\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"East European Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26565/2312-4334-2023-3-66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"East European Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26565/2312-4334-2023-3-66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Nucleon-Nucleon Elastic Scattering for Motion in The Shifted Deng-Fan Potential
The scattering theory's main objective is to comprehend an object by hurling something at it. One can learn details about an object by observing how it bounces off other objects. The potential that exists between the two particles is the thing that one seeks to comprehend. In time-independent approach to scattering, one assumes that the incident beam has been activated for a very long time and that the entire system is in a stationary state. For short-range local potentials, the variable phase methodology is highly useful in solving quantum mechanical scattering problems. Variable phase methodology/phase-function technique has been explicitly utilized for non-relativistic nucleon-nucleon scattering phenomenon with the fundamental central local potential term and without spin-orbit force. Working under this methodology, scattering phase shifts, total scattering cross section and Differential cross section have been investigated for a new nuclear potential model “Shifted Deng-Fan potential”. Real nucleon-nucleon scattering systems (n-p) and (p-p) have been treated for this purpose with partial waves up to l = 2 in the low and moderate energy region. For l > 0 waves, interacting repulsive barrier potential has been incorporated with the existing central part. Our results for the considered potential model show a close contest with that of the experimental data.