Kobiljon K. ugli Kurbonaliev, Nurulla F. Zikrillaev, Akhmadjon Z. Khusanov
{"title":"“高硅化锰-硅”异质结构的性质","authors":"Kobiljon K. ugli Kurbonaliev, Nurulla F. Zikrillaev, Akhmadjon Z. Khusanov","doi":"10.26565/2312-4334-2023-3-27","DOIUrl":null,"url":null,"abstract":"Based on the diffusion technology, many scientists and specialists have conducted research on obtaining materials that are fundamentally different in electrical and photo-thermal parameters from the original material by introducing various input atoms into semiconductor materials and creating deep energy levels in their band gap. The electrical, photoelectric, optical, and magnetic properties of these semiconductor materials have been extensively studied with metal group elements, isovalent elements, and rare earth elements added to silicon through the process of growth, ion implantation, or diffusion from the gaseous state. The technology of introducing impurity atoms into silicon by the diffusion method is distinguished from other methods in its simplicity, energy efficiency, and low cost. Up-to-date, the technology of changing the resistivity and conductivity of the initial sample by diffusion of manganese atoms into single-crystal silicon is studied insufficiently. In the article, it was determined that when manganese atoms diffuse into silicon, a high-manganese silicide is formed on its surface and in the near-surface layer. Based on the analysis of the experimental results, the thermal EMF (electromotive force) in Mn4Si7-Si -<Mn>-Mn4Si7 structures in a certain temperature range and under illumination (with monochromatic or integrated light) is explained by the fact that it based on the Pelte effect, observed in semiconductors.The volt-ampere characteristics (VAC) of the obtained structures were measured at various temperatures, in the dark and in the light. Formation of a boundary layer with high resistivity at the boundary of the higher manganese-silicon transition, the transition from higher manganese silicide to the base of the structure due to the effect of ionization of pores during illumination of structures and external influence. The applied field was clarified based on VAC results. The manganese high silicide layer formed on the silicon surface has the properties of a semiconductor, and the formation of a heterojunction upon transition to silicon is shown on the basis of the sphere diagram.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"1 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties of “Higher Manganese Silicide-Silicon” Heterostructure\",\"authors\":\"Kobiljon K. ugli Kurbonaliev, Nurulla F. Zikrillaev, Akhmadjon Z. Khusanov\",\"doi\":\"10.26565/2312-4334-2023-3-27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the diffusion technology, many scientists and specialists have conducted research on obtaining materials that are fundamentally different in electrical and photo-thermal parameters from the original material by introducing various input atoms into semiconductor materials and creating deep energy levels in their band gap. The electrical, photoelectric, optical, and magnetic properties of these semiconductor materials have been extensively studied with metal group elements, isovalent elements, and rare earth elements added to silicon through the process of growth, ion implantation, or diffusion from the gaseous state. The technology of introducing impurity atoms into silicon by the diffusion method is distinguished from other methods in its simplicity, energy efficiency, and low cost. Up-to-date, the technology of changing the resistivity and conductivity of the initial sample by diffusion of manganese atoms into single-crystal silicon is studied insufficiently. In the article, it was determined that when manganese atoms diffuse into silicon, a high-manganese silicide is formed on its surface and in the near-surface layer. Based on the analysis of the experimental results, the thermal EMF (electromotive force) in Mn4Si7-Si -<Mn>-Mn4Si7 structures in a certain temperature range and under illumination (with monochromatic or integrated light) is explained by the fact that it based on the Pelte effect, observed in semiconductors.The volt-ampere characteristics (VAC) of the obtained structures were measured at various temperatures, in the dark and in the light. Formation of a boundary layer with high resistivity at the boundary of the higher manganese-silicon transition, the transition from higher manganese silicide to the base of the structure due to the effect of ionization of pores during illumination of structures and external influence. The applied field was clarified based on VAC results. The manganese high silicide layer formed on the silicon surface has the properties of a semiconductor, and the formation of a heterojunction upon transition to silicon is shown on the basis of the sphere diagram.\",\"PeriodicalId\":42569,\"journal\":{\"name\":\"East European Journal of Physics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"East European Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26565/2312-4334-2023-3-27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"East European Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26565/2312-4334-2023-3-27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Properties of “Higher Manganese Silicide-Silicon” Heterostructure
Based on the diffusion technology, many scientists and specialists have conducted research on obtaining materials that are fundamentally different in electrical and photo-thermal parameters from the original material by introducing various input atoms into semiconductor materials and creating deep energy levels in their band gap. The electrical, photoelectric, optical, and magnetic properties of these semiconductor materials have been extensively studied with metal group elements, isovalent elements, and rare earth elements added to silicon through the process of growth, ion implantation, or diffusion from the gaseous state. The technology of introducing impurity atoms into silicon by the diffusion method is distinguished from other methods in its simplicity, energy efficiency, and low cost. Up-to-date, the technology of changing the resistivity and conductivity of the initial sample by diffusion of manganese atoms into single-crystal silicon is studied insufficiently. In the article, it was determined that when manganese atoms diffuse into silicon, a high-manganese silicide is formed on its surface and in the near-surface layer. Based on the analysis of the experimental results, the thermal EMF (electromotive force) in Mn4Si7-Si --Mn4Si7 structures in a certain temperature range and under illumination (with monochromatic or integrated light) is explained by the fact that it based on the Pelte effect, observed in semiconductors.The volt-ampere characteristics (VAC) of the obtained structures were measured at various temperatures, in the dark and in the light. Formation of a boundary layer with high resistivity at the boundary of the higher manganese-silicon transition, the transition from higher manganese silicide to the base of the structure due to the effect of ionization of pores during illumination of structures and external influence. The applied field was clarified based on VAC results. The manganese high silicide layer formed on the silicon surface has the properties of a semiconductor, and the formation of a heterojunction upon transition to silicon is shown on the basis of the sphere diagram.