Rosure Borhanalden Abdulrahman, Hassan A. Kadhem, Abdul Hakim Sh. Mohammed, Issa Z. Hassan
{"title":"氢氟酸(HF)浓度对日光光化学蚀刻(SLPCE)多孔硅层形貌影响的研究","authors":"Rosure Borhanalden Abdulrahman, Hassan A. Kadhem, Abdul Hakim Sh. Mohammed, Issa Z. Hassan","doi":"10.26565/2312-4334-2023-3-35","DOIUrl":null,"url":null,"abstract":"Silicon nanocrystals have a vast range of potential applications, from improving the efficiency of solar cells and optoelectronic devices to biomedical imaging and drug delivery, wastewater treatment, and antibacterial activities. In this study a photochemical etching technique was used to create layers of porous silicon on a donor silicon wafer with orientation (111) and resistivity equal to 1‑10 ohm·cm. The process involved focusing sunlight onto the samples using a telephoto lens with a suitable focal length of 30cm and a diameter of 90 mm, which provided sufficient energy to complete the chemical etching. By using a constant etching time of 60 minutes and different concentrations of hydrofluoric acid (ranging from 25% to 40%), layers with varying properties were obtained. The resulting surfaces were studied using the atomic force microscope (AFM), revealing the formation of different nanostructures and particles with varying shapes, sizes, and thicknesses depending on the preparation conditions. The average size of the particles was found to be 90.43nm at a concentration of 40% acid, while decreasing to 48.7nm at a concentration of 25% HF acid.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"24 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study the Effect of Hydrofluoric (HF) Concentration on the Topography of the Porous Silicon Layer Prepared by Sunlight Photochemical Etching (SLPCE)\",\"authors\":\"Rosure Borhanalden Abdulrahman, Hassan A. Kadhem, Abdul Hakim Sh. Mohammed, Issa Z. Hassan\",\"doi\":\"10.26565/2312-4334-2023-3-35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon nanocrystals have a vast range of potential applications, from improving the efficiency of solar cells and optoelectronic devices to biomedical imaging and drug delivery, wastewater treatment, and antibacterial activities. In this study a photochemical etching technique was used to create layers of porous silicon on a donor silicon wafer with orientation (111) and resistivity equal to 1‑10 ohm·cm. The process involved focusing sunlight onto the samples using a telephoto lens with a suitable focal length of 30cm and a diameter of 90 mm, which provided sufficient energy to complete the chemical etching. By using a constant etching time of 60 minutes and different concentrations of hydrofluoric acid (ranging from 25% to 40%), layers with varying properties were obtained. The resulting surfaces were studied using the atomic force microscope (AFM), revealing the formation of different nanostructures and particles with varying shapes, sizes, and thicknesses depending on the preparation conditions. The average size of the particles was found to be 90.43nm at a concentration of 40% acid, while decreasing to 48.7nm at a concentration of 25% HF acid.\",\"PeriodicalId\":42569,\"journal\":{\"name\":\"East European Journal of Physics\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"East European Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26565/2312-4334-2023-3-35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"East European Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26565/2312-4334-2023-3-35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Study the Effect of Hydrofluoric (HF) Concentration on the Topography of the Porous Silicon Layer Prepared by Sunlight Photochemical Etching (SLPCE)
Silicon nanocrystals have a vast range of potential applications, from improving the efficiency of solar cells and optoelectronic devices to biomedical imaging and drug delivery, wastewater treatment, and antibacterial activities. In this study a photochemical etching technique was used to create layers of porous silicon on a donor silicon wafer with orientation (111) and resistivity equal to 1‑10 ohm·cm. The process involved focusing sunlight onto the samples using a telephoto lens with a suitable focal length of 30cm and a diameter of 90 mm, which provided sufficient energy to complete the chemical etching. By using a constant etching time of 60 minutes and different concentrations of hydrofluoric acid (ranging from 25% to 40%), layers with varying properties were obtained. The resulting surfaces were studied using the atomic force microscope (AFM), revealing the formation of different nanostructures and particles with varying shapes, sizes, and thicknesses depending on the preparation conditions. The average size of the particles was found to be 90.43nm at a concentration of 40% acid, while decreasing to 48.7nm at a concentration of 25% HF acid.