Oleksandr P. Kulyk, Oksana V. Podshyvalova, Mykhailo Yu. Shevchenko, Victor I. Tkachenko, Iryna V. Hariachevska, Toru Aoki
{"title":"晶体中液体包裹体辐射诱导运动模型","authors":"Oleksandr P. Kulyk, Oksana V. Podshyvalova, Mykhailo Yu. Shevchenko, Victor I. Tkachenko, Iryna V. Hariachevska, Toru Aoki","doi":"10.26565/2312-4334-2023-3-67","DOIUrl":null,"url":null,"abstract":"A physical model is formulated for the motion of liquid inclusions in a crystal in the field of forces caused by the presence of radiation point defects. The model is based on a statistical approach to the processes of induced transitions of structural elements of a crystalline matrix at the interfacial boundary with its solution. From the energy principle, an analytical dependence of the velocity of a spherical azimuthally symmetric inclusion on its size is obtained, considering the threshold nature of the motion. It is shown that the theoretical dependence correlates well with experimental results obtained for inclusions of aqueous saturated solution in potassium chloride crystals irradiated by high-energy electrons. The proposed model of the radiation-induced motion of a liquid inclusion is dynamic and allows us to interpret the nature of inclusion velocity changes in the crystal over time to determine the characteristic energy parameters of point defects.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"22 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model of Radiation-Induced Motion of Liquid Inclusions in Crystal\",\"authors\":\"Oleksandr P. Kulyk, Oksana V. Podshyvalova, Mykhailo Yu. Shevchenko, Victor I. Tkachenko, Iryna V. Hariachevska, Toru Aoki\",\"doi\":\"10.26565/2312-4334-2023-3-67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A physical model is formulated for the motion of liquid inclusions in a crystal in the field of forces caused by the presence of radiation point defects. The model is based on a statistical approach to the processes of induced transitions of structural elements of a crystalline matrix at the interfacial boundary with its solution. From the energy principle, an analytical dependence of the velocity of a spherical azimuthally symmetric inclusion on its size is obtained, considering the threshold nature of the motion. It is shown that the theoretical dependence correlates well with experimental results obtained for inclusions of aqueous saturated solution in potassium chloride crystals irradiated by high-energy electrons. The proposed model of the radiation-induced motion of a liquid inclusion is dynamic and allows us to interpret the nature of inclusion velocity changes in the crystal over time to determine the characteristic energy parameters of point defects.\",\"PeriodicalId\":42569,\"journal\":{\"name\":\"East European Journal of Physics\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"East European Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26565/2312-4334-2023-3-67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"East European Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26565/2312-4334-2023-3-67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Model of Radiation-Induced Motion of Liquid Inclusions in Crystal
A physical model is formulated for the motion of liquid inclusions in a crystal in the field of forces caused by the presence of radiation point defects. The model is based on a statistical approach to the processes of induced transitions of structural elements of a crystalline matrix at the interfacial boundary with its solution. From the energy principle, an analytical dependence of the velocity of a spherical azimuthally symmetric inclusion on its size is obtained, considering the threshold nature of the motion. It is shown that the theoretical dependence correlates well with experimental results obtained for inclusions of aqueous saturated solution in potassium chloride crystals irradiated by high-energy electrons. The proposed model of the radiation-induced motion of a liquid inclusion is dynamic and allows us to interpret the nature of inclusion velocity changes in the crystal over time to determine the characteristic energy parameters of point defects.