MoCapDT:时间引导运动捕捉解决扩散转移

{"title":"MoCapDT:时间引导运动捕捉解决扩散转移","authors":"","doi":"10.23977/jeis.2023.080309","DOIUrl":null,"url":null,"abstract":"We present an approach to reconstruct the joint location from noisy marker position in 4D data. The 4D data means the 3D location of different markers and time sequence. At the core of our approach, we apply a modified diffusion model architecture to transfer and denoise the raw marker information in the latent space under the guidance of other temporal data. Then we decode the latent space to not real skeleton 3D space. This enable us not only utilize the temporal guidance, we further utilize the iterative denoising technique to exploit the potential in the diffusion network. Furthermore, we demonstrate that our work outperform auto- encoder based deep learning model by large margin during our experiment on CMU-Synthesized data set and some real-world dataset provided by NC-SOFT.","PeriodicalId":32534,"journal":{"name":"Journal of Electronics and Information Science","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MoCapDT: Temporal Guided Motion Capture Solving with Diffusion Transfer\",\"authors\":\"\",\"doi\":\"10.23977/jeis.2023.080309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an approach to reconstruct the joint location from noisy marker position in 4D data. The 4D data means the 3D location of different markers and time sequence. At the core of our approach, we apply a modified diffusion model architecture to transfer and denoise the raw marker information in the latent space under the guidance of other temporal data. Then we decode the latent space to not real skeleton 3D space. This enable us not only utilize the temporal guidance, we further utilize the iterative denoising technique to exploit the potential in the diffusion network. Furthermore, we demonstrate that our work outperform auto- encoder based deep learning model by large margin during our experiment on CMU-Synthesized data set and some real-world dataset provided by NC-SOFT.\",\"PeriodicalId\":32534,\"journal\":{\"name\":\"Journal of Electronics and Information Science\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronics and Information Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23977/jeis.2023.080309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronics and Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23977/jeis.2023.080309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种从四维数据中噪声标记点位置重构关节位置的方法。四维数据是指不同标记物和时间序列的三维位置。该方法的核心是在其他时间数据的指导下,应用改进的扩散模型架构对潜在空间中的原始标记信息进行传递和去噪。然后我们将潜在空间解码为非真实骨架三维空间。这使得我们不仅可以利用时间制导,还可以进一步利用迭代去噪技术来挖掘扩散网络的潜力。此外,我们在cnc - synthetic数据集和NC-SOFT提供的一些真实数据集上进行了实验,证明了我们的工作大大优于基于自动编码器的深度学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MoCapDT: Temporal Guided Motion Capture Solving with Diffusion Transfer
We present an approach to reconstruct the joint location from noisy marker position in 4D data. The 4D data means the 3D location of different markers and time sequence. At the core of our approach, we apply a modified diffusion model architecture to transfer and denoise the raw marker information in the latent space under the guidance of other temporal data. Then we decode the latent space to not real skeleton 3D space. This enable us not only utilize the temporal guidance, we further utilize the iterative denoising technique to exploit the potential in the diffusion network. Furthermore, we demonstrate that our work outperform auto- encoder based deep learning model by large margin during our experiment on CMU-Synthesized data set and some real-world dataset provided by NC-SOFT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
4
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信