基于聚合评论的姿态参数算法在假新闻检测中的应用

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yinnan Yao, Changhao Tang, Kun Ma
{"title":"基于聚合评论的姿态参数算法在假新闻检测中的应用","authors":"Yinnan Yao, Changhao Tang, Kun Ma","doi":"10.1504/ijguc.2023.133408","DOIUrl":null,"url":null,"abstract":"In the detection of fake news, the stance of comments usually contains evidence supporting false news that can be used to corroborate the detected results of the fake news. However, due to the misleading content of fake news, there is also the possibility of fake comments. By analysing the position of comments and considering the falseness of comments, comments can be used more effectively to detect fake news. In response to this problem, we proposed Bipolar Argumentation Frameworks of Reset Comments Stance (BAFs-RCS) and Average Parameter Aggregation of Comments (APAC) to use the stance of comments to correct the prediction results of the RoBERTa model. We use the Fakeddit dataset for experiments. Our macro-F1 results on 2-way and 3-way are improved by 0.0029 and 0.0038 compared to the baseline RoBERTa model's macro-F1 results at Fakeddit dataset. The results show that our method can effectively use the stance of comments to correct the results of model prediction errors.","PeriodicalId":44878,"journal":{"name":"International Journal of Grid and Utility Computing","volume":"33 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward stance parameter algorithm with aggregate comments for fake news detection\",\"authors\":\"Yinnan Yao, Changhao Tang, Kun Ma\",\"doi\":\"10.1504/ijguc.2023.133408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the detection of fake news, the stance of comments usually contains evidence supporting false news that can be used to corroborate the detected results of the fake news. However, due to the misleading content of fake news, there is also the possibility of fake comments. By analysing the position of comments and considering the falseness of comments, comments can be used more effectively to detect fake news. In response to this problem, we proposed Bipolar Argumentation Frameworks of Reset Comments Stance (BAFs-RCS) and Average Parameter Aggregation of Comments (APAC) to use the stance of comments to correct the prediction results of the RoBERTa model. We use the Fakeddit dataset for experiments. Our macro-F1 results on 2-way and 3-way are improved by 0.0029 and 0.0038 compared to the baseline RoBERTa model's macro-F1 results at Fakeddit dataset. The results show that our method can effectively use the stance of comments to correct the results of model prediction errors.\",\"PeriodicalId\":44878,\"journal\":{\"name\":\"International Journal of Grid and Utility Computing\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Grid and Utility Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijguc.2023.133408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and Utility Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijguc.2023.133408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在假新闻的检测中,评论的立场通常包含支持假新闻的证据,可以用来证实假新闻的检测结果。然而,由于假新闻的误导性内容,也存在假评论的可能性。通过分析评论的位置,考虑评论的虚假性,可以更有效地利用评论来检测假新闻。针对这一问题,我们提出了重置评论立场的双极性论证框架(BAFs-RCS)和评论平均参数聚合框架(APAC),利用评论立场修正RoBERTa模型的预测结果。我们使用Fakeddit数据集进行实验。与基线RoBERTa模型在Fakeddit数据集上的宏观f1结果相比,我们在2-way和3-way上的宏观f1结果分别提高了0.0029和0.0038。结果表明,我们的方法可以有效地利用评论的立场来纠正模型预测误差的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward stance parameter algorithm with aggregate comments for fake news detection
In the detection of fake news, the stance of comments usually contains evidence supporting false news that can be used to corroborate the detected results of the fake news. However, due to the misleading content of fake news, there is also the possibility of fake comments. By analysing the position of comments and considering the falseness of comments, comments can be used more effectively to detect fake news. In response to this problem, we proposed Bipolar Argumentation Frameworks of Reset Comments Stance (BAFs-RCS) and Average Parameter Aggregation of Comments (APAC) to use the stance of comments to correct the prediction results of the RoBERTa model. We use the Fakeddit dataset for experiments. Our macro-F1 results on 2-way and 3-way are improved by 0.0029 and 0.0038 compared to the baseline RoBERTa model's macro-F1 results at Fakeddit dataset. The results show that our method can effectively use the stance of comments to correct the results of model prediction errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Grid and Utility Computing
International Journal of Grid and Utility Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
1.30
自引率
0.00%
发文量
79
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信