{"title":"基于量子阱测定异质结构中横向电导率和磁阻振荡对温度的依赖性","authors":"Ulugbek I. Erkaboev, Rustamjon G. Rakhimov","doi":"10.26565/2312-4334-2023-3-10","DOIUrl":null,"url":null,"abstract":"In this work, the influence of two-dimensional state density on oscillations of transverse electrical conductivity in heterostructures with rectangular quantum wells is investigated. A new analytical expression is derived for calculating the temperature dependence of the transverse electrical conductivity oscillation and the magnetoresistance of a quantum well. For the first time, a mechanism has been developed for oscillating the transverse electrical conductivity and magnetoresistance of a quantum well from the first-order derivative of the magnetic field (differential) at low temperatures and weak magnetic fields. The oscillations of electrical conductivity and magnetoresistance of a narrow-band quantum well with a non-parabolic dispersion law are investigated. The proposed theory investigated the results of experiments of a narrow-band quantum well (InxGa1-xSb).","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"22 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of the Dependence of the Oscillation of Transverse Electrical Conductivity and Magnetoresistance on Temperature in Heterostructures Based on Quantum Wells\",\"authors\":\"Ulugbek I. Erkaboev, Rustamjon G. Rakhimov\",\"doi\":\"10.26565/2312-4334-2023-3-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the influence of two-dimensional state density on oscillations of transverse electrical conductivity in heterostructures with rectangular quantum wells is investigated. A new analytical expression is derived for calculating the temperature dependence of the transverse electrical conductivity oscillation and the magnetoresistance of a quantum well. For the first time, a mechanism has been developed for oscillating the transverse electrical conductivity and magnetoresistance of a quantum well from the first-order derivative of the magnetic field (differential) at low temperatures and weak magnetic fields. The oscillations of electrical conductivity and magnetoresistance of a narrow-band quantum well with a non-parabolic dispersion law are investigated. The proposed theory investigated the results of experiments of a narrow-band quantum well (InxGa1-xSb).\",\"PeriodicalId\":42569,\"journal\":{\"name\":\"East European Journal of Physics\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"East European Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26565/2312-4334-2023-3-10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"East European Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26565/2312-4334-2023-3-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Determination of the Dependence of the Oscillation of Transverse Electrical Conductivity and Magnetoresistance on Temperature in Heterostructures Based on Quantum Wells
In this work, the influence of two-dimensional state density on oscillations of transverse electrical conductivity in heterostructures with rectangular quantum wells is investigated. A new analytical expression is derived for calculating the temperature dependence of the transverse electrical conductivity oscillation and the magnetoresistance of a quantum well. For the first time, a mechanism has been developed for oscillating the transverse electrical conductivity and magnetoresistance of a quantum well from the first-order derivative of the magnetic field (differential) at low temperatures and weak magnetic fields. The oscillations of electrical conductivity and magnetoresistance of a narrow-band quantum well with a non-parabolic dispersion law are investigated. The proposed theory investigated the results of experiments of a narrow-band quantum well (InxGa1-xSb).