{"title":"高能球磨法制备掺钼Mn4Si7及表征","authors":"","doi":"10.56042/ijpap.v61i9.3491","DOIUrl":null,"url":null,"abstract":"Mn4Si7 is a non-degenerating semiconductor with an indirect band gap of 0.77eV having multi-domain applications. The Mn4Si7 and Mo-doped Mn4Si7 were synthesized by high-energy ball milling at 600 RPM for 50H. From the X-ray diffraction (XRD), the tetragonal phase was observed. The average crystalline size was estimated by the Debye-Scherrer equation which lies below ~25 nm. The morphology studies reveal different shapes and sizes were observed by scanning electron microscopy (SEM).","PeriodicalId":13509,"journal":{"name":"Indian Journal of Pure & Applied Physics","volume":"2013 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthetization and Characterization of Mo-doped Mn4Si7 by High Energy Ball Mill\",\"authors\":\"\",\"doi\":\"10.56042/ijpap.v61i9.3491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mn4Si7 is a non-degenerating semiconductor with an indirect band gap of 0.77eV having multi-domain applications. The Mn4Si7 and Mo-doped Mn4Si7 were synthesized by high-energy ball milling at 600 RPM for 50H. From the X-ray diffraction (XRD), the tetragonal phase was observed. The average crystalline size was estimated by the Debye-Scherrer equation which lies below ~25 nm. The morphology studies reveal different shapes and sizes were observed by scanning electron microscopy (SEM).\",\"PeriodicalId\":13509,\"journal\":{\"name\":\"Indian Journal of Pure & Applied Physics\",\"volume\":\"2013 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure & Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56042/ijpap.v61i9.3491\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure & Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56042/ijpap.v61i9.3491","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthetization and Characterization of Mo-doped Mn4Si7 by High Energy Ball Mill
Mn4Si7 is a non-degenerating semiconductor with an indirect band gap of 0.77eV having multi-domain applications. The Mn4Si7 and Mo-doped Mn4Si7 were synthesized by high-energy ball milling at 600 RPM for 50H. From the X-ray diffraction (XRD), the tetragonal phase was observed. The average crystalline size was estimated by the Debye-Scherrer equation which lies below ~25 nm. The morphology studies reveal different shapes and sizes were observed by scanning electron microscopy (SEM).
期刊介绍:
Started in 1963, this journal publishes Original Research Contribution as full papers, notes and reviews on classical and quantum physics, relativity and gravitation; statistical physics and thermodynamics; specific instrumentation and techniques of general use in physics, elementary particles and fields, nuclear physics, atomic and molecular physics, fundamental area of phenomenology, optics, acoustics and fluid dynamics, plasmas and electric discharges, condensed matter-structural, mechanical and thermal properties, electronic, structure, electrical, magnetic and optical properties, cross-disciplinary physics and related areas of science and technology, geophysics, astrophysics and astronomy. It also includes latest findings in the subject under News Scan.