一般负指数加权积分系统的Liouville型定理

IF 1 3区 数学 Q1 MATHEMATICS
Jingjing Ma, Yunyun Hu
{"title":"一般负指数加权积分系统的Liouville型定理","authors":"Jingjing Ma, Yunyun Hu","doi":"10.3934/cpaa.2023103","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the weighted integral system with negative exponents on the upper half space $ \\mathbb{R}^{n+1}_+ $ as follows$ \\begin{equation*} \\begin{cases} u(X) = \\displaystyle{\\int}_{\\mathbb{R}^{n+1}_+}\\frac{f(u, v)(Y)}{t^\\alpha z^\\beta|X-Y|^\\lambda}dY, &amp;X\\in\\mathbb{R}^{n+1}_+, \\\\ v(X) = \\displaystyle{\\int}_{\\mathbb{R}^{n+1}_+}\\frac{g(u, v)(Y)}{ t^\\beta z^\\alpha|X-Y|^\\lambda}dY, &amp;X\\in\\mathbb{R}^{n+1}_+, \\end{cases} \\end{equation*} $where $ \\alpha, \\beta\\le0 $, $ \\lambda<0 $ and $ X = (x, t), \\, Y = (y, z). $ Under the natural conditions on $ f $ and $ g $, we obtain the classification and symmetry of positive solutions by the method of moving spheres in integral forms. Moreover, we generalize our results to integral system on $ \\mathbb{R}^{n+m} $.","PeriodicalId":10643,"journal":{"name":"Communications on Pure and Applied Analysis","volume":"43 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liouville type theorems for general weighted integral system with negative exponents\",\"authors\":\"Jingjing Ma, Yunyun Hu\",\"doi\":\"10.3934/cpaa.2023103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the weighted integral system with negative exponents on the upper half space $ \\\\mathbb{R}^{n+1}_+ $ as follows$ \\\\begin{equation*} \\\\begin{cases} u(X) = \\\\displaystyle{\\\\int}_{\\\\mathbb{R}^{n+1}_+}\\\\frac{f(u, v)(Y)}{t^\\\\alpha z^\\\\beta|X-Y|^\\\\lambda}dY, &amp;X\\\\in\\\\mathbb{R}^{n+1}_+, \\\\\\\\ v(X) = \\\\displaystyle{\\\\int}_{\\\\mathbb{R}^{n+1}_+}\\\\frac{g(u, v)(Y)}{ t^\\\\beta z^\\\\alpha|X-Y|^\\\\lambda}dY, &amp;X\\\\in\\\\mathbb{R}^{n+1}_+, \\\\end{cases} \\\\end{equation*} $where $ \\\\alpha, \\\\beta\\\\le0 $, $ \\\\lambda<0 $ and $ X = (x, t), \\\\, Y = (y, z). $ Under the natural conditions on $ f $ and $ g $, we obtain the classification and symmetry of positive solutions by the method of moving spheres in integral forms. Moreover, we generalize our results to integral system on $ \\\\mathbb{R}^{n+m} $.\",\"PeriodicalId\":10643,\"journal\":{\"name\":\"Communications on Pure and Applied Analysis\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2023103\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2023103","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑上半空间$ \mathbb{R}^{n+1}_+ $上的负指数加权积分系统如下$ \begin{equation*} \begin{cases} u(X) = \displaystyle{\int}_{\mathbb{R}^{n+1}_+}\frac{f(u, v)(Y)}{t^\alpha z^\beta|X-Y|^\lambda}dY, &X\in\mathbb{R}^{n+1}_+, \\ v(X) = \displaystyle{\int}_{\mathbb{R}^{n+1}_+}\frac{g(u, v)(Y)}{ t^\beta z^\alpha|X-Y|^\lambda}dY, &X\in\mathbb{R}^{n+1}_+, \end{cases} \end{equation*} $,其中$ \alpha, \beta\le0 $, $ \lambda<0 $和$ X = (x, t), \, Y = (y, z). $在$ f $和$ g $上的自然条件下,用积分形式的动球法得到了正解的分类和对称性。并将所得结果推广到$ \mathbb{R}^{n+m} $上的积分系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Liouville type theorems for general weighted integral system with negative exponents
In this paper, we consider the weighted integral system with negative exponents on the upper half space $ \mathbb{R}^{n+1}_+ $ as follows$ \begin{equation*} \begin{cases} u(X) = \displaystyle{\int}_{\mathbb{R}^{n+1}_+}\frac{f(u, v)(Y)}{t^\alpha z^\beta|X-Y|^\lambda}dY, &X\in\mathbb{R}^{n+1}_+, \\ v(X) = \displaystyle{\int}_{\mathbb{R}^{n+1}_+}\frac{g(u, v)(Y)}{ t^\beta z^\alpha|X-Y|^\lambda}dY, &X\in\mathbb{R}^{n+1}_+, \end{cases} \end{equation*} $where $ \alpha, \beta\le0 $, $ \lambda<0 $ and $ X = (x, t), \, Y = (y, z). $ Under the natural conditions on $ f $ and $ g $, we obtain the classification and symmetry of positive solutions by the method of moving spheres in integral forms. Moreover, we generalize our results to integral system on $ \mathbb{R}^{n+m} $.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: CPAA publishes original research papers of the highest quality in all the major areas of analysis and its applications, with a central theme on theoretical and numeric differential equations. Invited expository articles are also published from time to time. It is edited by a group of energetic leaders to guarantee the journal''s highest standard and closest link to the scientific communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信