具有硬势的空间齐次朗道方程的解析Gelfand-Shilov平滑效应

IF 1.3 4区 数学 Q2 MATHEMATICS, APPLIED
Hao-Guang Li, Chao-Jiang Xu
{"title":"具有硬势的空间齐次朗道方程的解析Gelfand-Shilov平滑效应","authors":"Hao-Guang Li, Chao-Jiang Xu","doi":"10.3934/dcdsb.2023157","DOIUrl":null,"url":null,"abstract":"In this work, we give an improved new argument to prove that the solution of the Cauchy problem for the nonlinear spatially homogeneous Landau equation with hard potentials with $ L^2(\\mathbb{R}^3) $ initial datum enjoys a analytic Gelfand-Shilov regularizing effect in the class $ S^1_1(\\mathbb{R}^3) $, the evolution of analytic radius is similar to the heat equation.","PeriodicalId":51015,"journal":{"name":"Discrete and Continuous Dynamical Systems-Series B","volume":"43 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analytic Gelfand-Shilov smoothing effect of the spatially homogeneous Landau equation with hard potentials\",\"authors\":\"Hao-Guang Li, Chao-Jiang Xu\",\"doi\":\"10.3934/dcdsb.2023157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we give an improved new argument to prove that the solution of the Cauchy problem for the nonlinear spatially homogeneous Landau equation with hard potentials with $ L^2(\\\\mathbb{R}^3) $ initial datum enjoys a analytic Gelfand-Shilov regularizing effect in the class $ S^1_1(\\\\mathbb{R}^3) $, the evolution of analytic radius is similar to the heat equation.\",\"PeriodicalId\":51015,\"journal\":{\"name\":\"Discrete and Continuous Dynamical Systems-Series B\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Continuous Dynamical Systems-Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcdsb.2023157\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems-Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdsb.2023157","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

本文给出了一个改进的新论点,证明了具有$ L^2(\mathbb{R}^3) $初始基准的非线性空间齐次硬势朗道方程的Cauchy问题解在$ S^1_1(\mathbb{R}^3) $类中具有解析Gelfand-Shilov正则化效应,解析半径的演化与热方程相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytic Gelfand-Shilov smoothing effect of the spatially homogeneous Landau equation with hard potentials
In this work, we give an improved new argument to prove that the solution of the Cauchy problem for the nonlinear spatially homogeneous Landau equation with hard potentials with $ L^2(\mathbb{R}^3) $ initial datum enjoys a analytic Gelfand-Shilov regularizing effect in the class $ S^1_1(\mathbb{R}^3) $, the evolution of analytic radius is similar to the heat equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
8.30%
发文量
216
审稿时长
6 months
期刊介绍: Centered around dynamics, DCDS-B is an interdisciplinary journal focusing on the interactions between mathematical modeling, analysis and scientific computations. The mission of the Journal is to bridge mathematics and sciences by publishing research papers that augment the fundamental ways we interpret, model and predict scientific phenomena. The Journal covers a broad range of areas including chemical, engineering, physical and life sciences. A more detailed indication is given by the subject interests of the members of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信