有界区域上非自治随机Navier-Stokes方程随机吸引子的渐近自治

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kush Kinra, Renhai Wang, Manil T. Mohan
{"title":"有界区域上非自治随机Navier-Stokes方程随机吸引子的渐近自治","authors":"Kush Kinra, Renhai Wang, Manil T. Mohan","doi":"10.3934/eect.2023049","DOIUrl":null,"url":null,"abstract":"This article concerns the long-term random dynamics for a non-autonomous Navier-Stokes equation defined on a bounded smooth domain $ \\mathcal{O} $ driven by multiplicative and additive noise. For the two kinds of noise driven equations, we demonstrate that the existence of a unique pullback attractor which is backward compact and asymptotically autonomous in $ \\mathbb{L}^2(\\mathcal{O}) $ and $ \\mathbb{H}_0^1(\\mathcal{O}) $, respectively. The compact embedding $ {\\mathbb{H}}_0^1(\\mathcal{O})\\subset{\\mathbb{L}}^2(\\mathcal{O}) $ helps us to show the backward-uniform pullback asymptotic compactness (BUPAC) of the non-autonomous random dynamical systems (NRDS) in the Lebesgue space $ {\\mathbb{L}}^2(\\mathcal{O}) $. The backward-uniform flattening property of the solutions is used to prove the BUPAC of the NRDS in the Sobolev space $ \\mathbb{H}_0^1(\\mathcal{O}) $.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Asymptotic autonomy of random attractors for non-autonomous stochastic Navier-Stokes equations on bounded domains\",\"authors\":\"Kush Kinra, Renhai Wang, Manil T. Mohan\",\"doi\":\"10.3934/eect.2023049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article concerns the long-term random dynamics for a non-autonomous Navier-Stokes equation defined on a bounded smooth domain $ \\\\mathcal{O} $ driven by multiplicative and additive noise. For the two kinds of noise driven equations, we demonstrate that the existence of a unique pullback attractor which is backward compact and asymptotically autonomous in $ \\\\mathbb{L}^2(\\\\mathcal{O}) $ and $ \\\\mathbb{H}_0^1(\\\\mathcal{O}) $, respectively. The compact embedding $ {\\\\mathbb{H}}_0^1(\\\\mathcal{O})\\\\subset{\\\\mathbb{L}}^2(\\\\mathcal{O}) $ helps us to show the backward-uniform pullback asymptotic compactness (BUPAC) of the non-autonomous random dynamical systems (NRDS) in the Lebesgue space $ {\\\\mathbb{L}}^2(\\\\mathcal{O}) $. The backward-uniform flattening property of the solutions is used to prove the BUPAC of the NRDS in the Sobolev space $ \\\\mathbb{H}_0^1(\\\\mathcal{O}) $.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/eect.2023049\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/eect.2023049","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了由乘性和加性噪声驱动的非自治Navier-Stokes方程在有界光滑域$ \mathcal{O} $上的长期随机动力学。对于这两类噪声驱动方程,我们分别证明了$ \mathbb{L}^2(\mathcal{O}) $和$ \mathbb{H}_0^1(\mathcal{O}) $中存在一个向后紧致且渐近自治的唯一的回拉吸引子。紧嵌入$ {\mathbb{H}}_0^1(\mathcal{O})\子集{\mathbb{L}}^2(\mathcal{O}) $帮助我们展示了Lebesgue空间$ {\mathbb{L}}^2(\mathcal{O}) $中非自治随机动力系统(NRDS)的后向均匀拉回渐近紧性(BUPAC)。利用解的后向均匀平坦性证明了NRDS在Sobolev空间$ \mathbb{H}_0^1(\mathcal{O}) $中的BUPAC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic autonomy of random attractors for non-autonomous stochastic Navier-Stokes equations on bounded domains
This article concerns the long-term random dynamics for a non-autonomous Navier-Stokes equation defined on a bounded smooth domain $ \mathcal{O} $ driven by multiplicative and additive noise. For the two kinds of noise driven equations, we demonstrate that the existence of a unique pullback attractor which is backward compact and asymptotically autonomous in $ \mathbb{L}^2(\mathcal{O}) $ and $ \mathbb{H}_0^1(\mathcal{O}) $, respectively. The compact embedding $ {\mathbb{H}}_0^1(\mathcal{O})\subset{\mathbb{L}}^2(\mathcal{O}) $ helps us to show the backward-uniform pullback asymptotic compactness (BUPAC) of the non-autonomous random dynamical systems (NRDS) in the Lebesgue space $ {\mathbb{L}}^2(\mathcal{O}) $. The backward-uniform flattening property of the solutions is used to prove the BUPAC of the NRDS in the Sobolev space $ \mathbb{H}_0^1(\mathcal{O}) $.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信