有界区域上非自治随机Navier-Stokes方程随机吸引子的渐近自治

IF 1.3 4区 数学 Q1 MATHEMATICS
Kush Kinra, Renhai Wang, Manil T. Mohan
{"title":"有界区域上非自治随机Navier-Stokes方程随机吸引子的渐近自治","authors":"Kush Kinra, Renhai Wang, Manil T. Mohan","doi":"10.3934/eect.2023049","DOIUrl":null,"url":null,"abstract":"This article concerns the long-term random dynamics for a non-autonomous Navier-Stokes equation defined on a bounded smooth domain $ \\mathcal{O} $ driven by multiplicative and additive noise. For the two kinds of noise driven equations, we demonstrate that the existence of a unique pullback attractor which is backward compact and asymptotically autonomous in $ \\mathbb{L}^2(\\mathcal{O}) $ and $ \\mathbb{H}_0^1(\\mathcal{O}) $, respectively. The compact embedding $ {\\mathbb{H}}_0^1(\\mathcal{O})\\subset{\\mathbb{L}}^2(\\mathcal{O}) $ helps us to show the backward-uniform pullback asymptotic compactness (BUPAC) of the non-autonomous random dynamical systems (NRDS) in the Lebesgue space $ {\\mathbb{L}}^2(\\mathcal{O}) $. The backward-uniform flattening property of the solutions is used to prove the BUPAC of the NRDS in the Sobolev space $ \\mathbb{H}_0^1(\\mathcal{O}) $.","PeriodicalId":48833,"journal":{"name":"Evolution Equations and Control Theory","volume":"192 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Asymptotic autonomy of random attractors for non-autonomous stochastic Navier-Stokes equations on bounded domains\",\"authors\":\"Kush Kinra, Renhai Wang, Manil T. Mohan\",\"doi\":\"10.3934/eect.2023049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article concerns the long-term random dynamics for a non-autonomous Navier-Stokes equation defined on a bounded smooth domain $ \\\\mathcal{O} $ driven by multiplicative and additive noise. For the two kinds of noise driven equations, we demonstrate that the existence of a unique pullback attractor which is backward compact and asymptotically autonomous in $ \\\\mathbb{L}^2(\\\\mathcal{O}) $ and $ \\\\mathbb{H}_0^1(\\\\mathcal{O}) $, respectively. The compact embedding $ {\\\\mathbb{H}}_0^1(\\\\mathcal{O})\\\\subset{\\\\mathbb{L}}^2(\\\\mathcal{O}) $ helps us to show the backward-uniform pullback asymptotic compactness (BUPAC) of the non-autonomous random dynamical systems (NRDS) in the Lebesgue space $ {\\\\mathbb{L}}^2(\\\\mathcal{O}) $. The backward-uniform flattening property of the solutions is used to prove the BUPAC of the NRDS in the Sobolev space $ \\\\mathbb{H}_0^1(\\\\mathcal{O}) $.\",\"PeriodicalId\":48833,\"journal\":{\"name\":\"Evolution Equations and Control Theory\",\"volume\":\"192 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution Equations and Control Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/eect.2023049\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Equations and Control Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/eect.2023049","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了由乘性和加性噪声驱动的非自治Navier-Stokes方程在有界光滑域$ \mathcal{O} $上的长期随机动力学。对于这两类噪声驱动方程,我们分别证明了$ \mathbb{L}^2(\mathcal{O}) $和$ \mathbb{H}_0^1(\mathcal{O}) $中存在一个向后紧致且渐近自治的唯一的回拉吸引子。紧嵌入$ {\mathbb{H}}_0^1(\mathcal{O})\子集{\mathbb{L}}^2(\mathcal{O}) $帮助我们展示了Lebesgue空间$ {\mathbb{L}}^2(\mathcal{O}) $中非自治随机动力系统(NRDS)的后向均匀拉回渐近紧性(BUPAC)。利用解的后向均匀平坦性证明了NRDS在Sobolev空间$ \mathbb{H}_0^1(\mathcal{O}) $中的BUPAC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic autonomy of random attractors for non-autonomous stochastic Navier-Stokes equations on bounded domains
This article concerns the long-term random dynamics for a non-autonomous Navier-Stokes equation defined on a bounded smooth domain $ \mathcal{O} $ driven by multiplicative and additive noise. For the two kinds of noise driven equations, we demonstrate that the existence of a unique pullback attractor which is backward compact and asymptotically autonomous in $ \mathbb{L}^2(\mathcal{O}) $ and $ \mathbb{H}_0^1(\mathcal{O}) $, respectively. The compact embedding $ {\mathbb{H}}_0^1(\mathcal{O})\subset{\mathbb{L}}^2(\mathcal{O}) $ helps us to show the backward-uniform pullback asymptotic compactness (BUPAC) of the non-autonomous random dynamical systems (NRDS) in the Lebesgue space $ {\mathbb{L}}^2(\mathcal{O}) $. The backward-uniform flattening property of the solutions is used to prove the BUPAC of the NRDS in the Sobolev space $ \mathbb{H}_0^1(\mathcal{O}) $.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolution Equations and Control Theory
Evolution Equations and Control Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.10
自引率
6.70%
发文量
5
期刊介绍: EECT is primarily devoted to papers on analysis and control of infinite dimensional systems with emphasis on applications to PDE''s and FDEs. Topics include: * Modeling of physical systems as infinite-dimensional processes * Direct problems such as existence, regularity and well-posedness * Stability, long-time behavior and associated dynamical attractors * Indirect problems such as exact controllability, reachability theory and inverse problems * Optimization - including shape optimization - optimal control, game theory and calculus of variations * Well-posedness, stability and control of coupled systems with an interface. Free boundary problems and problems with moving interface(s) * Applications of the theory to physics, chemistry, engineering, economics, medicine and biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信