具有Mamadu-Njoseh多项式的时间分数阶电报方程的有限元正交配置方法

Ebimene James Mamadu, Henrietta Ify Ojarikre, Edith Omamuyovwi Maduku
{"title":"具有Mamadu-Njoseh多项式的时间分数阶电报方程的有限元正交配置方法","authors":"Ebimene James Mamadu, Henrietta Ify Ojarikre, Edith Omamuyovwi Maduku","doi":"10.4236/jamp.2023.119168","DOIUrl":null,"url":null,"abstract":"Finite element method (FEM) is an efficient numerical tool for the solution of partial differential equations (PDEs). It is one of the most general methods when compared to other numerical techniques. PDEs posed in a variational form over a given space, say a Hilbert space, are better numerically handled with the FEM. The FEM algorithm is used in various applications which includes fluid flow, heat transfer, acoustics, structural mechanics and dynamics, electric and magnetic field, etc. Thus, in this paper, the Finite Element Orthogonal Collocation Approach (FEOCA) is established for the approximate solution of Time Fractional Telegraph Equation (TFTE) with Mamadu-Njoseh polynomials as grid points corresponding to new basis functions constructed in the finite element space. The FEOCA is an elegant mixture of the Finite Element Method (FEM) and the Orthogonal Collocation Method (OCM). Two numerical examples are experimented on to verify the accuracy and rate of convergence of the method as compared with the theoretical results, and other methods in literature.","PeriodicalId":15035,"journal":{"name":"Journal of Applied Mathematics and Physics","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Element Orthogonal Collocation Approach for Time Fractional Telegraph Equation with Mamadu-Njoseh Polynomials\",\"authors\":\"Ebimene James Mamadu, Henrietta Ify Ojarikre, Edith Omamuyovwi Maduku\",\"doi\":\"10.4236/jamp.2023.119168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finite element method (FEM) is an efficient numerical tool for the solution of partial differential equations (PDEs). It is one of the most general methods when compared to other numerical techniques. PDEs posed in a variational form over a given space, say a Hilbert space, are better numerically handled with the FEM. The FEM algorithm is used in various applications which includes fluid flow, heat transfer, acoustics, structural mechanics and dynamics, electric and magnetic field, etc. Thus, in this paper, the Finite Element Orthogonal Collocation Approach (FEOCA) is established for the approximate solution of Time Fractional Telegraph Equation (TFTE) with Mamadu-Njoseh polynomials as grid points corresponding to new basis functions constructed in the finite element space. The FEOCA is an elegant mixture of the Finite Element Method (FEM) and the Orthogonal Collocation Method (OCM). Two numerical examples are experimented on to verify the accuracy and rate of convergence of the method as compared with the theoretical results, and other methods in literature.\",\"PeriodicalId\":15035,\"journal\":{\"name\":\"Journal of Applied Mathematics and Physics\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/jamp.2023.119168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jamp.2023.119168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有限元法是求解偏微分方程的有效数值工具。与其他数值技术相比,它是最通用的方法之一。在给定空间(如希尔伯特空间)上以变分形式提出的偏微分方程,用有限元法更好地进行数值处理。有限元算法应用于流体流动、传热学、声学、结构力学与动力学、电场与磁场等领域。因此,本文以Mamadu-Njoseh多项式为网格点,建立了求解时间分数阶电报方程(TFTE)近似解的有限元正交配置方法(FEOCA),网格点对应于在有限元空间中构造的新基函数。FEOCA是有限元法和正交配置法的巧妙结合。通过两个数值算例与理论结果和文献中其他方法的比较,验证了该方法的精度和收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite Element Orthogonal Collocation Approach for Time Fractional Telegraph Equation with Mamadu-Njoseh Polynomials
Finite element method (FEM) is an efficient numerical tool for the solution of partial differential equations (PDEs). It is one of the most general methods when compared to other numerical techniques. PDEs posed in a variational form over a given space, say a Hilbert space, are better numerically handled with the FEM. The FEM algorithm is used in various applications which includes fluid flow, heat transfer, acoustics, structural mechanics and dynamics, electric and magnetic field, etc. Thus, in this paper, the Finite Element Orthogonal Collocation Approach (FEOCA) is established for the approximate solution of Time Fractional Telegraph Equation (TFTE) with Mamadu-Njoseh polynomials as grid points corresponding to new basis functions constructed in the finite element space. The FEOCA is an elegant mixture of the Finite Element Method (FEM) and the Orthogonal Collocation Method (OCM). Two numerical examples are experimented on to verify the accuracy and rate of convergence of the method as compared with the theoretical results, and other methods in literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信